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Design of Two-Dimensional Zero
Phase FIR Fan Filters Via

the McClellan Transform

EMMANOUIL Z. PSARAKIS, VASSILIS G. MERTZIOS, anp GEORGE PH. ALEXIOU

Abstract —In this paper we present a design method of 2-D zero phase
finite impulse response (FIR) fan filters with quadrantal symmetry, via
the McClellan transform. We give conditions that the coefficients of the
McClellan transform must satisfy, in order to avoid the scaling of the
transform. The proposed design method satisfies these conditions. Finally
we extend our design method to the design of general shape 2-D zero
phase FIR fan filters.

I. INTRODUCTION

HE design of two-dimensional (2-D) digital filters has

been of growing interest over the last years. This is
due to the variety of applications in fields such as image
processing, medical diagnosis, planetary physics, industrial
inspection, radar, sonar, seismic and geophysical data pro-
cessing, pattern recognition, robot vision and weather pre-
diction [1]-[6].

A very important class of 2-D filters is the class of “fan
filters”. The fan filter is a 2-D filter which has long been
used to process geoseismic data. It has the ability to pass
seismic events whose apparent velocities on the earth’s
surface fall within a wedge shaped region in the frequency
wavenumber plane. Design approaches for 2-D finite im-
pulse response (FIR) and 2-D infinite impulse response
(IIR) fan filters can be broadly classified into two cate-
gories:

i) based on transformations of one-dimensional (1-D)
filters [8]-[11), [21]-[24];

ii) based on direct min-max and L, optimization
techniques [16]-[20], [25].

The design approaches of the IIR filters [1]-[6], [16]-[24]
are generally more complicated than the corresponding
approaches for FIR filters, since stability constraints must
also be considered.
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In this paper we will use a design method which falls
into category (i). Category (i) has the property to divide
the design problem into two decoupled design subprob-
lems. Namely, the selection of a high order 1-D filter and
the selection of a low order 2-D transform, thereby allow-
ing high order 2-D designs to be obtained with small
computational effort. Furthermore, these filters can often
be designed to be optimal in the Chebychev sense.

Since the two subproblems are decoupled and since
there exist very powerful methods for designing 1-D fil-
ters; in this paper we will be concentrated only on the
design of the 2-D to 1-D transform. Specifically for the
2-D to 1-D transform we will be using the McClellan
transform. The McClellan transform has been proved to be
a very useful tool for the design of 2-D digital filters [8],
[9], [14], [15]. In general the coefficients of the McClellan
transform are computed using optimization techniques [9],
[14], [15]. These techniques require a large computational
effort. Thus the need for approximate solutions is neces-
sary. In [10] such an approximation technique is presented
which results in simple formulas for fast calculation of the
McClellan transform coefficients.

The goal of this paper is to present the design of 2-D
zero phase FIR fan filters with arbitrary inclination 6 by
using the McClellan transform. A fast approximate method
is proposed. This method derives filters that are very close
to the ideal specifications.

This paper is organized as follows. Section II contains a
brief presentation of the McClellan transform and how it
can be applied to the design of 2-D filters. In Section III
we give necessary and sufficient conditions that the
McClellan transform must satisfy in order to be applicable
to the design of fan filters. In Section IV we present our
design method. In Section V we apply our method to the
design of 2-D zero phase FIR fan filters with quadrantal
symmetry, and we extend it to general shape fan filters
without quadrantal symmetry. Finally, in Section VI we
present the conclusions.

II. THE MCCLELLAN TRANSFORM

In many signal processing applications we are interested
in zero phase filters. Thus consider a 1-D filter with
frequency response G (e’“) that has the property G(e/®) =
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G(cos(w)), ie., the impulse response is symmetric. The
McClellan transform method uses the relation
cos(w) = fw;, w,) (2.1)

where w is the 1-D frequency and (w,,w,) is the 2-D
frequency pair. Specifically the McClellan transform de-
fines f(w,, w,) as follows:

cos(w) = fom(wy, @)= X ¥ t;;c08 (iw;) cos ( jw,)
i=0,=0

+ Y Y sysin(ke,)sin(le,) (2.2)
k=11=1
(GM for Generalized McClellan transform). Notice from
(2.1) that a necessary condition f;y(w;, w,) must satisfy is
—1< fom(wp, 0;) <1, (2.3)
Usually we like to have points (w;,w,) that satisfy the
equalities in (2.3), in order to cover the whole 1-D band.
In this paper we will use the original McClellan trans-
form which has quadrantal symmetry and is given by
cos (@) = fom(wy, w,)

=g+ 11508 (w;) + £g, cos (w,)

for w,,w,e[— 7, 7].

+ #,; cos (w; ) cos (w, ) (2.4)

(OM for Original McClellan transform). Substituting in
G(cos(w)) the cos(w) from (2.4), the 1-D frequency re-
sponse G(ef‘”) is transformed into a 2-D frequency re-
sponse H(e/“, ef“’z) which has quadrantal symmetry and
thus satisfies H(e/”1 e”"z)—H(cos(wl) cos(w,)). Notice
that if the 1-D zero phase filter is FIR with impulse
response of extend (2M +1), then the impulse response
h(n, m), (that corresponds to H(ef‘“l e/*?)), is of extend
(2M +1)X(2M +1) and satisfies the following symmetry
conditions:

h(2M —k,m)=h(k,m), k=01,---, M—1 (2.5a)
h(n,2M—1)=h(n,1),  1=01,---,M—1. (2.5b)

To a given w € [0, 7] corresponds a curve in the (w,, @,)
plane. Along this curve the transformed frequency re-
sponse H(e’®, e/“?) is constant equal to the value of the
1-D frequency response G(eJ"’) at the point w. As w
varies, a family of contours is generated which completely
describes the transformed frequency response. The con-
tours, or iso-potentials, in the (w,, w,) plane corresponding
to the equation

H(e’*s, ) =¢, (2.6)

are the same with the contours corresponding to the equa-
tion

fom(wy,0,) = ¢, 2.7

where c,, ¢, are constants. Thus the design of the 2-D filter
is reduced to the design of the transform fou(w;, w,).

We now proceed as follows: we will assume that we have
a 1-D zero phase low-pass filter with cutoff frequency w,
and we will define the coefficients of (2.4) in such a way
that the 2-D passband and stopband are mapped in the
1-D passband and stopband, respectively.
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Fig. 1. Specifications of an ideal fan filter within the first quadrant.

As we said, in order to have full coverage of the 1-D
band, fou(w;, w,) must satisfy (2.3). Finding constraints
on the coefficients of the transform such that the equalities
in (2.3) are satisfied is not an easy problem. In other words
it is difficult to find the locations where the transform
attains its global maximum and minimum values.

A solution to the above problem, which was introduced
by Mersereau in [14], [15], [28], is to disregard (2.3) and
calculate the coefficients using some optimization tech-
nique. Then the transform is scaled in order the transform
in (2.4) to have values in the range [—1,1]. The new
transform is used for the design of desired filter. Later
Nguyen and Swamy in [12], [13] described simple formulas
for scaling and they finally gave a scaling free McClellan
transform. This transform permits the design of circular
and elliptical shaped filters without the need of scaling.

In the next section we will define conditions that the
McClellan transform must satisfy in order not to need
scaling. These conditions are applicable only for the case
of fan filters design.

III. THE MCCLELLAN TRANSFORM AND
THE FAN FILTERS

Let «,, be the cut-off frequency of the 1-D prototype
zero phase low-pass filter. Let also 8, be the angle given by
the 2-D fan filter specifications, (as shown in Fig. 1). Since
we have quadrantal symmetry, we will limit ourselves only
to the first quadrant. Notice that the (0, 7),(#,0) points
are in the passband and stopband, respectively. Thus we
require the original McClellan transform (2.4) to satisfy
the following condition:

= 1= fom(7,0) < fom(wr, ;) < fom(0,7) =1. (3.1)

In other words, we require the global maximum and global
minimum of the transform to be attained at the (0, 7) and
(m,0) points, respectively. This means that we are mapping
the (0, 7) point of the 2-D frequency plane to the 1-D
frequency origin and the (#,0) point of the 2-D frequency
plane to the 7 point of the 1-D frequency. In order to
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have fou(7,0) = ~1 and fo,(0, 7) =1 it is easy to verify
that the coefficients of (2.4) must satisfy
=1
to=1+1,.
Under (3.2), (2.4) is written as follows:
Fom(@1, ©3) =1, (1+cos (@) cos (w,))
+(tg+1)cos(wy) + ty cos(w,). (3.3)
Notice that F,(w,, w,), depends only on two parameters
while the f\(w,, ,) had four parameters.
We would like to find conditions on ¢, #,; such that

our transform Fqy(w,, w,) satisfies condition (3.1), for
every pair (w,, ,) in the 2-D frequency plane; namely

—-1< Fgy(wp, 0,) <1. (3.4)

Notice that if (3.4) holds we assure that the whole 2-D
frequency plane is mapped onto the whole 1-D band and
thus our transform does not need scaling as was the case in
{10], [14], [28]. A necessary and sufficient condition for the
validity of (3.4), is given in the following theorem.

Theorem: The McClellan transform Fqy(w,, w,) is ab-
solutely bounded by unity for every w;,w, in the 2-D
frequency plane, ie., |Fop(wy, ;)| <1, V 0, 0, €[0, 7] X
[0, 7], if and only if the following constraint on the coeffi-
cients holds:

(32)

|t < min {(1+24,), ~ 10, } (3.5)

Proof:  Our goal is to satisfy (3.4). In other words we
want to have for every pair (w;, w,) € [0, 7]X[0, 7]

—1<1;(1+cos(w;)cos(w,))
+ (2191 +1) cos(w,) + tg; cos (w,)
<1. (3.6)

Consider first the left-hand side (LHS) inequality of (3.6).
After some mathematical manipulations this inequality is
equivalent to

1+cos(w,)

" 1+cos (w,)cos (@

) (14t (1+cos(w,))] <t~ tor
2

3.7

In order (3.7) to be true for every (w;, w,) €[0, 7] X[0, =],
it is necessary and sufficient to be true for the maximum
value of the LHS expression. The maximum value L_, , of
the LHS part, depends on the value of the coefficient ¢,
as follows:

L - —(1+2¢y), for t;; < —0.5
max ) 0, for 15, > —0.5.

(3.8)
Thus, using (3.8), (3.7) is equivalent to

s —(1+14), for t;, < —0.5
7 tors for ty; > —0.5.

(3.9)

Consider now the right-hand side (RHS) inequality of
(3.6), this is equivalent to

1—cos(w,)

T+2g(1- >ty + g
1+cos(w,)c()s(w2)[ a(l1=cos(w,))] > 1+ 1

(3.10)
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In a similar way,

for t;, < —0.5

3.11
for ty; > —0.5. (3.11)

Finally, combining the necessary and sufficient con-
straints (3.9) and (3.11) we get

(1+1y),

—lop»

forzy; < —0.5

for tg;>—0.5 (3.12)

1] < {
but (3.12) is equivalent to (3.5) and this concludes the
proof of our theorem.

Comment: Notice that (3.5) can be true only for —1<
151 < 0. Also since Fq(0,7)=1 and Fyp(7,0)=—1, if
(3.5) holds then this means that Fy,(w;, w,) has a global
maximum at (0, 7) and a global minimum at (,0).

IV. DESIGNING ZERO PHASE FAN FILTERS ViA
THE MCCLELLAN TRANSFORM

In this section we will define the coefficients of the
McClellan transform in order to design 2-D zero phase
FIR fan filters. The ideal specifications of a 2-D fan filter
with quadrantal symmetry is shown in Fig. 1. As we can
note, there is a line, (let us call it a cut-off line), which
separates the passband from the stopband region. Let 6,
be the angle of this line with the w;-axis. The angle 8 can
take values in (0, 7/2), in order to produce fan filters of
arbitrary inclination.

Our goal is the following: to a given 8 € (0, 7/2), select
the values of the coefficients ¢, and ¢, of the transform
(3.3) and the cutoff frequency w,, such that the resulting
iso-potential corresponding to w,, approximates the cut-off
line. The equation of the cut-off line is given by

W, = KW, (4.1)
where
k=tan(4). (4.2)

The equation for the iso-potentials can be derived by
solving (3.3) for w, as a function of w,, and is given by

cos(w)— (1424 )cos(w,)— 1,

W, = g(wl) = arccos to, + tpcos(w;)

(4.3)

An obvious way to formulate the design problem is to
require (4.3) to approximate (4.1) for w = w,. If we define
proximity in the mean square or min-max sense, then this
leads to a nonlinear problem, the solution of which re-
quires a large computational effort. In the following we
propose a different formulation that leads to a linear
problem. Define a deviation function D(w;,w,,w) with
the relation

(4.4)

We know that a function w, = g(w,) is an iso-potential
for some w€{0, 7], if D(w;,w,,w)=0. Since we want
w, =kKw, to be an iso-potential for w = w, we must have
D(w,, kwy, wy) = 0. Unfortunately, this requirement, in the
general case, is not met by any values of ty,, #,;, and w,.
Thus we must define ¢, #,;, and w,, in order to minimize

D(wy, wy, w) = Foy(w;,0,)—cos(w).
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D(wy, kwy, ) in some sense. To reduce the number of
parameters of the above minimization problem, i.e., to
simplify the computation of the unknowns, we define the
cut-off frequency w, of the prototype 1-D filter as a
function of the angle 8. To this end let us see the form of
the iso-potentials. Consider w;, w, to have small values and
let us make the approximation cos(v)=1—v%/2, then
(3.3), after keeping only second-order terms, is equivalent
to

wy W
?—F=cos(w)—(2p+1) (4.5)
where
a*=(-2/p) (4.6)
b2=2/(p+1) 4.7
and
pP=ty+1,- (4.8)

From (4.5) we can see that the iso-potentials, for small
w;, w,, are hyperbolas. Let us now concentrate on the case
w = wy. For this case, as we said, we want the correspond-
ing iso-potential to be close to (4.1). We can thus require
our iso-potential to satisfy (4.1) at least for small w,, w,. In
other words we would like (4.5) to be equivalent to (4.1).
This is the case when

cos(wy) =2p+1 (4.9)
a/b=x. (4.10)
Using (4.6)-(4.10) we conclude that
cos(260)+1
- =lath (4.11)
and
cos(w,) = —cos(26) (4.12)
or
wy=m—280. (4.13)

Relation (4.13) defines the cut-off frequency w, as a func-
tion of the angle . Also (4.11) constitutes a constraint on
the sum of the coefficients ¢,; and #;;. Thus we have to
define only one unknown and we select 7.

We can now reformulate the minimization problem as
follows:

D(wy, ;) =A(op, @)+ B(o,0,)  (4.14)

where

A(wy, w,) = (1—cos(w,))(1—cos(w,)) (4.15a)

B(w,w,) =- [(P +1)(1 —cos(w;))+p(1 —cos(wz))].
(4.15b)

Define

S(tn)=/uf)2(‘*’1a"‘*’1)d“’1 (4.16)
0

where u=x for §€(0,7/4] and u=a/k for G &
(7/4, 7/2). We will limit ourselves to the case 8 € (0, 7/4].
For angles 8 € (n/4,7/2) we can show that the coeffi-
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TABLE 1
THE VALUES OF MCCLELLAN TRANSFORM COEFFICIENTS AND THE
CORRESPONDING MSE AND RELATIVE ABSOLUTE DEVIATION E,
FOR DIFFERENT VALUES OF THE ANGLE 6
0 Tor I MSE E (%) |
5 -.737691 -.254713 6.14 x 10~7 1.8
10 725172 -.244673 9.43 x 10~° 1.8
15 -.704518 -.228494 4.44 x 107 18
20 676847 | -.206174 1.25 x 1074 18
25 -.643468 -.177925 2.57 x 1074 1.8
30 -606136 | -.143863 4.07 x 10—* 1.7
35 -.567235 -.103774 4.72 x 10~% 1.5
40 -.530125 -.056699 2.99 x 10-1 1.2
45 -.500000 0 7.97 x 10712 0
cients 1y, and r,, are given by
h=—i
th=—(1+17y) (4.17)

where 7, 7}, are the coefficients computed for § = 7/2— 6.
Now we want to minimize S(#,,) defined in (4.16). Since
the minimization is with respect to only one parameter, we
can find the analytic solution

f”A(wl, kwy)B(w;, kw,) dw,
hy=— 21— . (418)
f A*(wy, k) dw,
0
After the analytic evaluation of the integrals, we obtain
Ny + N,sin(km) + Nysin (2x7)

= D, + D,sin(kx)+ Dysin(2xw) (4.19)
where
3n(2p+1)
2
2
- 2(2p+1)x _ 3p+1 _ (p+1)(?.2 k?) (4.200)
1-« K k(4—k?)
P xp
T4k 1-4k2
and
9
Dl:T
2 2 k2 2k?
D2=_;(1+4—K2_ 1—K2)
1 1-2x2 8i?
D3=H(1+ T 1~4K2). (4.20b)

Notice that for 8 = 45°, we have B(w;, kw,) =0 for all w,
and thus for this case 7, = 0. This gives a mean squared
error equal to zero which means that our solution is exact.
This case was treated in [8]. In Table I we present the
values of t,, #;; for different values of 8. In Figs. 2, 3, and
4 we have plotted the iso-potentials for § = 20, 30, and 45
degrees, respectively. Notice that the form of the iso-
potentials is very close to a hyperbola not only for small
values of w,,w,. From the table we conclude that the
proposed design method gives results with small MSE.
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Fig. 2. Iso-potentials obtained from the computed coefficients of the
McClellan transform. § = 20°.
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Fig. 3. Iso-potentials obtained from the computed coefficients of the

McClellan transform. 8 =

Unfortunately this error does not give a measure of how
close our approximate cut-off iso-potential to the ideal
cutoff line is. Thus we also compute the relative absolute
deviation of our iso-potential with the ideal one, as fol-

lows:
X4
_/ |k, =
0

T
/ Kw, dw,
0

where the function «w, describes the ideal cut-off line and
g(w;) describes our cut-off isopotential given by (4.3). The
values of E are also given in Table I. Notice that the
relative absolute deviation is very small.

In order our proposed design method to be complete, we
must prove that the values of the coefficients 7y and #,,
resulting from our design, satisfy the constraint (3.5) in the
theorem of Section IIl. With the next lemma we prove that
this is indeed the case.

Lemma: The coefficients ¢y, and #,; defined by (4.11)
and (4.18) satisfy the constraint (3.5).

g(w1)|a'w1

X100 (4.21)

E=

1
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Iso-potentials obtained from the computed coefficients of the

Fig. 4.
McClellan transform. § =

Proof: Consider the following cases.

1) Case 8 €(0,m/4]: From (4.11) and using the relation
—1<cos(28) <1, we conclude that the value of the coeffi-
cient z;; which results from our design method, meet the
constraint

—(1+1ty) <t (4.22)

Thus using (4.22), in order ¢,; to subject to the constraint
(3.5) it is sufficient to prove that r); also satisfies the
following constraint:

< — o

(1+1ty) (4.23)

because then we show that |f);| <1y and |t;] < (1+¢g).
Adding ¢, to all members of (4.23), using (4.12) and the
relation cos(28)+1=2/(1+tan?(9)), (4.23) can be writ-
ten as

gty <

-1 K2
20+ SMS

Consider first the LHS inequality of (4.24). Substitution of
t;, from (4.18) into (4.24), yields

(4.24)

.[(:A(wl’ xwl)[xz(l —cos(w;))—(1 ~cos (kw,))

. (I—COS(wl))gl—COS(le)) ]

dw,>0. (4.25)

Since from (4.15) A(w,, kw,;) is non-negative, we can show
that (4.25) is true if we show that the quantity contained in
the brackets is non-negative. Because we are in the first
quadrant and 0 <« <1, using the relation 1—cos(2a) =
2sin* (a), the quantity in the brackets is non-negative if

3] (3
tan| — sin| —
2 S 2 )

w77 Ko

2 2

(4.26)

The function tan(x)/x is a monotone increasing function
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of x in the range [0, 7/2], therefore, we have

G B
an| — tan| — sm| —
2/ 2 /g 2

W, 77 KW, 7 Kk,

(4.27)

2 2 2

Thus the LHS inequality of (4.24) is true. Considering now
the RHS inequality of (4.24), in a similar way we can show

that it is true if
Kw, . (@
tan ( —2— ) sin ( 7 )
> .

Koy 27 @)

2 2

Since the function sin(x)/x is a monotone decreasing
function of x in the range [0, 7/2], we have

(5 =5 =5
an| — sin| — sin{ —
2 > 2 g 12

K@) K@,  Z

(4.28)

(4.29)

2 2

and this concludes the proof of (4.24).

ii) Case 8 € (m/4,m/2): Starting from (3.5) and (4.17),
it is straightforward to prove that the coefficients ¢, and
t;,, meet the constraint (3.5) and this concludes the proof
of the lemma.

With the above lemma we have proved that our design
does not need scaling and also that we use the whole 1-D
band.

@
2

V. DESIGN PROCEDURE

In this section we will apply our design method of
Section IV, to the design of 2-D zero phase FIR fan filters
with quadrantal symmetry. Then we will extend our method
to the design of fan filters of more general shape without
quadrantal symmetry.

To design a 2-D zero phase FIR fan filter with quadran-
tal symmetry such as shown in Fig. 1 with our method, we
must proceed according to the following steps.

Step 1: From the angle 6, i.e., the inclination of the
desired fan filter, using (4.13) we define the desired 1-D
cutoff frequency w,.

Step 2: Using some 1-D filter design method, we design
a zero phase low-pass FIR filter with cutoff frequency w,.

Step 3: Using (4.11) and (4.18) we compute the appro-
priate values of the McClellan transform coefficients.

Step 4: We write the frequency response of the 1-D
designed filter in the form G(e/*) =¥, g,T,[cos(w)], where
T,[x] is the nth-order Chebychev polynomial. We then
substitute the cos(w) in the frequency response of the
prototype filter, with the McClellan transform (3.3) to
produce the desired 2-D zero phase FIR fan filter.

General Shape 2-D Fan Filters

A fan filter with more general shape is shown in Fig. 5.
For uses of this type of filters see [18]. To design such a
filter, we follow the above-mentioned procedure twice with
6 =0, and 0 =0,, respectively. If we define a filter with
frequency response equal to the difference of the two

15

08}

0.6 7
Stopband \ Passbind

02} i [ 1

Normalized frequency wp
P

02} E i
04
0.6¢ PR - Ly 1

08F j

-1 03 ] 05 1
Normalized frequency w,

Fig. 5. Specifications of an ideal general shape fan filter.
frequency responses, that is H(e/®1, e/*2) = H,(e/*, e/)
= ﬁz(ef”‘, e/“?), where the frequency response
Hy(e’1,e/*?) corresponds to the angle 6, and the fre-
quency response H,(e/*!, e/“2) corresponds to the angle
6,, then the resulting frequency response is quadrantally
symmetric with the first and the third quadrants being the
same as the first and the third quadrants of Fig. 5. We thus
need to reject the second and the fourth quadrants. This
can be achieved by cascading a “quadrant fan filter” [14],
[24], [28]. This filter can be designed using a transform
method. For example we can design such a filter using a
1-D zero phase low-pass FIR filter with cut-off frequency
wy=7/2 and the McClellan transform fg(w,, w,)=
sin(w,)sin(w,), [14], [28). Notice that the “quadrant fan
filter” does not depend on the specific fan specifications
and thus can be designed only once.

VI. CoNCLUSION

In this paper, a new design method was presented that
computes the McClellan transform coefficients needed for
the design of 2-D zero phase FIR fan filters with quadran-
tal symmetry. The coefficient values were computed using,
e.g., MSE, as an optimality criterion. The resulting cut-off
iso-potential of our design method were shown to have a
very small relative absolute deviation from the ideal one.
Extension of our method to general shape fan filters were
also given.
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