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INTRODUCTION

Wireless communications have become the fastest
growing industry and are ubiquitous in almost all
areas of our daily life, encompassing radio and
television broadcasting, mobile phones, and satel-
lite communications. The increasing demand for
wireless services for voice, multimedia, and data
transmissions results in a continually expanding
market. Clearly, the development of solid-state
technology and digital-signal-processing (DSP)
devices contributes significantly to this growth
because such technology makes low-cost and fea-
ture-rich communication devices feasible. More
importantly, however, the globalization of wireless
transmission standards accelerates the spread of
wireless services. For example, driven by
widespread acceptance of the IEEE 802.11a/b/g
standards, wireless local area networking for com-
puters and other devices is spreading rapidly.

Naturally, as wireless services spread and
become integrated into the lives of more people,
the expectation of the performance and reliabili-

ty of wireless devices increases. The evolution of
standards and systems is driven by the demand
for better quality of service, higher data rates,
and higher mobility. As a result, system design-
ers now face more challenges such as limited
bandwidth, resource allocation, and particularly,
channel-fading effects introduced by variability
in the time, frequency, and space domains.

Most wireless transmissions, such as the
orthogonal frequency division multiplexing
(OFDM) systems of IEEE 802.11a, the multi-
antenna multi-input multi-output (MIMO) sys-
tems of IEEE 802.11n, and the multi-user code
division multiple access (CDMA) systems, can be
modeled as a linear-block transmission system.
Given a linear-block transmission model assump-
tion, maximum-likelihood equalizers (MLEs) or
near-ML decoders were adopted at the receiver
to collect diversity, which is an important metric
for performance; however, these decoders exhibit
high complexity. To reduce the decoding com-
plexity, low-complexity equalizers, such as linear
equalizers (LEs) and decision feedback equaliz-
ers (DFEs) often are adopted. These methods,
however, may not utilize the diversity enabled by
the transmitter and as a result, have degraded
performance compared to MLEs [1]. In this arti-
cle, we first provide a comprehensive review of
low-complexity equalizers based on the linear
system model. Then we reveal the fundamental
condition when low-complexity equalizers collect
the same diversity as that of the near-MLEs.

Lattice reduction (LR) techniques were intro-
duced to improve the performance of low-com-
plexity equalizers without increasing the
complexity significantly [2–6]. It has been shown
that LR-aided equalizers collect the same diversi-
ty as MLEs for vertical-Bell Laboratories layered-
space-time (V-BLAST) systems [3]. After studying
low-complexity equalizers, we provide an overview
of different LR algorithms and LR-aided equaliz-
ers. The performance improvement is analyzed in
terms of diversity for two well-adopted LR algo-
rithms, the complex Lenstra-Lenstra-Lovász
(CLLL) algorithm (see [3] and references there-
in) and Seysen’s algorithm (SA) [4]. Furthermore,
by considering the nature of CLLL operations
and exploiting the inherent parallelism in the
algorithm, we arrive at a hardware architecture
suitable for very-large-scale-integration (VLSI)
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implementation. We illustrate an efficient field-
programmable gate array (FPGA) implementa-
tion of the CLLL algorithm for 4 × 4 systems.

SYSTEM MODEL
Consider linear-block transmissions depicted in
Fig. 1a:

y = Hs + w (1)

where H is the M × N channel matrix, s is the
N × 1 symbol vector obtained by mapping and
block encoding the information bit sequence, y is
the M × 1 received vector, and w is independent
and identically distributed (i.i.d.), complex, addi-
tive white Gaussian noise with variance σw

2. At
the receiver, with channel state information and
observation y, a detector can be adopted to
obtain the estimate of the transmitted symbol
vector ŝ . Note that the channel matrix H is gen-
eral enough to represent a number of cases, for
example, multi-antenna block transmissions, pre-
coded OFDM systems, single-carrier Toeplitz
channels, and multi-user channels [1].

Given the linear-block transmission model in
(1), there are various ways to decode the trans-
mitted symbol vector s from the observation y.
Here, we generalize the term “equalizer” as the
one to equalize the channel effect. Different
equalizers lead to different system performance.
The bit error rate (BER) describes the reliability
of the transmission and therefore is a widely
adopted figure of merit to characterize the per-
formance of wireless systems. The BER perfor-
mance of wireless transmissions over fading
channels is usually quantified by two parameters:
diversity order and coding gain. Diversity order
is defined as the negative asymptotic slope of the
BER versus the signal-to-noise ratio (SNR)
curve plotted in log-log scale. It describes how
fast the error probability decays with SNR. The
coding gain further measures the SNR gap
among different coding schemes that have the
same diversity. The higher the diversity is, the
smaller the error probability is when SNR is
high. To enjoy the diversity from fading chan-
nels, we must design both the transmitter and
receiver appropriately. In this article, we focus
on the design of the receiver.

An often used and also optimal detector (if
there is no prior information about the symbols
and/or symbols are treated as deterministic
parameters) is the maximum-likelihood equalizer
(MLE), which is based on an exhaustive search
among all N × 1 symbol vectors. The MLE pro-
vides optimal error performance with high-
decoding complexity (O(|S|N)). Some near-ML
equalizers also were proposed to reduce the
complexity and achieve near-ML performance.
For example, the sphere-decoding (SD) method
[7] formulates a tree search and reduces the
average complexity to polynomial when N is
small and the SNR is high, but the variance of
the complexity may remain high. The complexity
of near-MLEs is especially high when the size of
the channel matrix and/or the constellation size
is large. Furthermore, early termination and
fixed memory considerations for hardware imple-
mentations may degrade the performance of
near-MLEs.

LOW-COMPLEXITY EQUALIZERS

In addition to near-MLEs, there are other equaliz-
ers that usually are characterized and referred to
as low-complexity equalizers: the previously men-
tioned LEs and DFEs. LEs, as depicted in Fig. 1b,
are in the form ŝ  = Q(Gy), where Q(⋅) corresponds
to the Decision block and denotes quantization to
the nearest constellation point for a given modula-
tion scheme. Two LEs that often are adopted are
the zero-forcing (ZF) equalizer, where G is the
Moore-Penrose pseudo-inverse of the channel
matrix, and the linear minimum mean-square
error (MMSE) equalizer, where G is constructed
to minimize the noise effect [3, Eq. (6)]. The ZF
equalizer aims to cancel the channel effect by
assuming a noiseless environment, whereas the
MMSE equalizer further takes into account the
noise effect. Thus, the MMSE equalizer achieves
better performance in general, but requires an
estimate of the noise variance at the receiver. The
complexities of both equalizers are dominated by
matrix inversion, which requires polynomial com-
plexity O(N3) through Gaussian elimination. Fur-
thermore, the MMSE equalizer can be expressed
in the same form as the ZF equalizer, based on an
extended system model as in [3, 5].

The DFEs, also referred to as successive
interference cancellation (SIC) equalizers, are
depicted in Fig. 1c. The major difference
between DFEs and LEs is the feedback of the
detected symbols through a feedback matrix B.
According to the equalization method, DFEs are
divided into two categories: ZF-DFE (ZF-SIC)
and MMSE-DFE (MMSE-SIC). The specific
designs of the feedforward matrix F and the
feedback matrix B for both DFEs can be found
in [8]. Different from LEs, matrix decomposi-
tions (e.g., QR-decomposition) constitute the
major part of the complexity of DFEs. Algo-
rithms such as these usually are associated with
the complexity of O(MN2). Compared to LEs,
the corresponding DFEs achieve better perfor-
mance. However, the performance of DFEs is
greatly affected by the decoding order and the
error propagation. To improve the performance
of DFEs and to mitigate the complexity over-

n Figure 1. Block diagram of a) linear transmission system model; b) linear
equalizers; c) decision feedback equalizers.

+

–

ŝ
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head introduced by the feedback filter, optimum
ordering is usually adopted in DFEs. For exam-
ple, V-BLAST ordering optimizes the BER per-
formance, but the complexity is sub-optimal [8].

To provide a complete comparison of low-
complexity equalizers with near-MLEs, we first
find the SNR of different equalizers to achieve
the target BER by searching the SNR with step
size 0.05 dB. The corresponding complexity of
different equalizers is calculated in terms of aver-
age arithmetic operations (including real addi-
tions and real multiplications). The results are
given in Table 1 for the quadrature phase shift
keying (QPSK) constellation and i.i.d. complex
channels for different sizes, where the SNR is
defined as the symbol energy per transmit dimen-
sion versus noise power spectral density. The
complexity of the ZF equalizer is based on the
Gaussian elimination of square matrices, whereas
the complexity of SIC equalizers is obtained from
the QR-decomposition approach. Furthermore,
the complexity of the MMSE (MMSE-SIC) equal-
izer does not include the procedure of estimating
the noise variance. The SD method is implement-
ed as in [7]. For a higher quadrature amplitude
modulation (QAM) constellation, the complexity
of SD increases dramatically, whereas the com-
plexity of LEs and DFEs stays the same. From
Table 1, it is obvious that the low-complexity
equalizers require a higher SNR to achieve a cer-
tain BER although their complexity is quite low.

LOW COMPLEXITY OR
HIGH DIVERSITY? OR BOTH?

The main drawback of the aforementioned low-
complexity equalizers is that these equalizers usu-
ally cannot collect the same diversity as
near-MLEs. For example, the diversity order col-
lected by LEs and DFEs is only M – N + 1 for

spatial multiplexing systems with i.i.d. channels,
whereas near-MLE exploits diversity M [3]. The
impact of the lack of diversity order becomes
especially severe when the channel matrix is
square, for example, M = N as shown in Table 1.
Furthermore, as shown in [8], optimal ordering
cannot increase the diversity order collected by
DFEs but improves the performance only in
terms of coding gain. Because near-MLEs exhibit
either high average complexity or high complexity
variance, the cubic order complexity results in
LEs and DFEs being widely adopted in practical
systems. A natural question is whether the com-
plexity reduction is worth the performance sacri-
fice. Or in other words, is there a way to keep the
complexity low while improving the performance
in terms of coding gain or even diversity order?

Some interesting observations show that in
some channel setups, LEs and DFEs collect the
same diversity as that of near-MLEs. For example,
for  orthogonal space-time block code (OSTBC)
and uncoded OFDM systems, low-complexity
equalizers have the same diversity as that of near-
MLEs [1], where both equivalent channel matrices
satisfy the property that HHH is diagonal. This
motivates us to determine the fundamental condi-
tions when low-complexity equalizers exploit the
same diversity as MLEs. As revealed in [1], the
fundamental condition for LEs to collect the same
diversity as near-MLEs is that the channels must
be constrained within a certain distance from
orthogonality, where an orthogonal matrix H
means HHH is a diagonal matrix. Or in other words,
the channel matrices cannot be arbitrarily close to
singularity. Thus, the quality of channels deter-
mines the diversity of low-complexity equalizers.
Now, a question naturally arises: how do we quan-
tify the distance of channels from orthogonality?

There are several metrics that have been
adopted to measure the quality of a matrix and
further judge whether the fundamental condition

nn

                               

Table 1. Comparison of different equalizers for i.i.d. complex channels with QPSK modulation.

M = N = 4 M = N = 6 M = N = 8

Target BER 10–3 10–4 10–3 10–4 10–3 10–4

SD
SNR 8.25 dB 11.05 dB 5.05 dB 7.35 dB 3.05 dB 5.0 dB

Complexity 3662 3550 16019 14090 55957 54150

ZF
SNR 27.1 dB 37.05 dB 27.05 dB 37.35 dB 27.00 dB 37.05 dB

Complexity 298 869 1892

MMSE
SNR 22.4 dB 32.45 dB 20.1 dB 30.25 dB 18.20 dB 28.25 dB

Complexity 812 2618 6040

ZF-SIC
SNR 23.75 dB 33.15 dB 23.15 dB 33.60 dB 22.50 dB 32.80 dB

Complexity 748 2401 5546

MMSE-SIC
SNR 19.75 dB 29.65 dB 16.85 dB 27.10 dB 14.60 dB 24.75 dB

Complexity 1284 4333 10266
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is met. These include the condition number, the
orthogonality deficiency, and Seysen’s metric.
The well-known condition number is defined as
the ratio between the maximal and minimal sin-
gular values of the matrix. The orthogonality
deficiency (od(H)) [3, Eq. (17)] is defined as the
ratio between the actual volume of the space
spanned by all the columns of the matrix and the
volume of space spanned by all the columns,
assuming they are orthogonal. Seysen’s metric
(S(H)) [4, Eq. (3)] further balances the orthogo-
nality between the matrix and the inverse matrix.
In addition to these metrics, other metrics exist
that help quantify the performance gap between
a specific low-complexity equalizer and an MLE.
For example, the proximity factor in [9] is a
function not only of the channel matrix but also
the specific low-complexity equalizer adopted.
However, for most practical systems, no matter
which metric is adopted, the quality of the chan-
nel matrix does not have a lower bound for the
worst case, which means the channel matrices
can be arbitrarily close to singular. For these
transmissions, low-complexity equalizers usually
exhibit inferior performance relative to MLEs
due to the loss of diversity [1]. For low-complexi-
ty equalizers to achieve the same diversity as
MLEs, the channel matrix must be modified
such that the channel matrix distance from
orthogonality is upper-bounded. One approach
is to modify the receiver by adopting lattice
reduction techniques, which restore the diversity
of low-complexity equalizers by modifying chan-
nel matrices to meet the fundamental condition.

LATTICE REDUCTION AIDED
EQUALIZERS

In the linear-block transmission model in (1), the
received signal vector y is the noisy observation of
the vector Hs, which is in the lattice spanned by
the columns of H because all the entries of s can
be transformed to complex integers by shifting
and scaling. In general, a lattice has more than
one set of basis vectors. Some bases exist that
span the same lattice as H but are closer to
orthogonality than H. The process of finding a
basis closer to orthogonality is called lattice
reduction. The ultimate goal of LR algorithms is
to find a “better” channel matrix H~ = HT where
T is a unimodular matrix, which means that all
the entries of T and T–1 are complex integers, and
the determinant of T is ±1 or ±j. The restrictions
on the matrix T ensure that the lattice generated
by H~ is the same as that of H. Note that the equiv-
alence of the two lattices spanned by H and H~ is
based on the assumption that all the entries of s
belong to the whole complex integer set.

With the new channel matrix H~ generated by
the LR algorithm, the system model in (1) can
be written as

y = HT (T–1s) + w = H~z + w. (2)

Because all the entries of T–1 and the signal con-
stellation belong to a Gaussian integer ring, the
entries of z also are Gaussian integers. We first
apply low-complexity equalizers onto the system
in (2) to obtain ẑ , the estimate of z, by taking the

constellation of z as the whole Gaussian integer
ring. After obtaining ẑ , we recover s by mapping
Tẑ  to the appropriate constellation. These two
hard-decoding steps consist of the LR-aided low-
complexity equalizers (LRAEs) for linear-block
transmission systems. Details can be found in [2,
3]. Obviously, how good the new basis is depends
on the specific LR algorithm and determines
whether the diversity of low-complexity equaliz-
ers can be restored. Thus, in the following sec-
tion, we briefly review the existing LR algorithms.

LATTICE REDUCTION ALGORITHMS
LR techniques have been studied by mathemati-
cians for decades, and many LR algorithms have
been proposed. Gaussian reduction, Minkowski
reduction, and Korkine-Zolotareff (KZ) reduc-
tion algorithms find the optimal basis for a lat-
tice based on the successive minimal criteria, but
these algorithms are highly complex and there-
fore infeasible for communications systems (see
[6] and references therein). The well-known
Lenstra-Lenstra-Lovász (LLL) algorithm does
not guarantee finding the optimal basis with
minimal od, but it guarantees in polynomial time
to find a basis within a factor to the optimal one
[6]. Seysen’s algorithm reduces Seysen’s metric
to perform LR [4]. A simplified Brun’s algo-
rithm is proposed and implemented in [10] to
reduce complexity but also sacrifices perfor-
mance. For the worst cases, these LR algorithms
may not terminate, but simulations have shown
that this never occurs in practice [6, p. 62; 11].

Given the array of LR algorithms in the litera-
ture, it is difficult to justify which one is better in
terms of both performance and complexity.
Therefore, it is hard to choose the appropriate
one for VLSI implementation among various LR
algorithms. In the following, we try to delineate
the performance and complexity of two well-
adopted LR algorithms: the SA and the LLL
algorithm. The reason we do not consider the
other algorithms is that the Gaussian reduction
method is only for 2 × 2 systems and is equivalent
to SA; the Minkowski and the KZ algorithms do
not have polynomial time implementation; and
the performance of Brun’s algorithm is much
worse than that of the LLL algorithm as shown in
[10] and the lack of analytical results on diversity.

The real LLL (RLLL) algorithm first is
applied to improve the performance of low-com-
plexity equalizers by extending the complex
transmission system in (1) to an equivalent real
model [5]. Furthermore, the complex LLL
(CLLL) algorithm is proposed, based on the
Gram-Schmidt orthonormalization in [2], and
based on the QR-decomposition in [3]. An M ×
N complex matrix H~ is called an LLL-reduced
basis of a lattice if it satisfies two conditions: size
reduction and the δ-condition ([2, Eq. (3)] and
[3, Eq. (18)] for details). It has been shown that
the CLLL algorithm reduces the complexity of
the RLLL algorithm without sacrificing perfor-
mance [2, 3]. As shown in Table 2, the RLLL
algorithm requires more basis updates than the
CLLL algorithm. One basis update is defined as
the process that updates the n-th basis vector
using the m-th basis as hn ← hn + am,nhm. Fur-
thermore, the sorted QR-decomposition
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(SQRD) in [5] is introduced into the LLL pro-
cess to further reduce the complexity as shown
in Table 2. The CLLL algorithm was applied to
the dual basis of the channel matrix, and the
performance is further improved [9]. The com-
plexity of the LLL algorithm depends on the
specific realization of the channel but has an
upper bound O(N2logN) on average [11].

As an alternative to the LLL algorithm, SA is
an iterative method to reduce the lattice. The ulti-
mate goal of SA is to find a set of bases H~, from
which the Seysen’s metric cannot be reduced fur-
ther. The lazy method and the greedy method are
first proposed to implement SA (see references in
[4]), whereas a simplified greedy implementation
is proposed in [4] to further reduce the complexi-
ty. The lazy implementation of SA guarantees
finding the optimal bases that minimize S(H~) but
requires high complexity. The greedy implemen-
tation requires much fewer operations, but the
algorithm may stop at a certain set of bases H~

with suboptimal S(H~) (a local minimum). Differ-
ent from the LLL algorithm, SA requires a fixed
number of arithmetic operations in each basis
update, although the number of basis updates is
still random. As shown in Table 2, the number of
basis updates required by simplified, greedy SA in
[4] is less than that required by the CLLL algo-
rithm and even CLLL with SQRD, in both aver-
age and standard deviation. However, the number
of arithmetic operations required by SA in each
basis update (16M + 104N – 90) is far more than
that of the CLLL algorithm (at most (28M + 46N
+ 6) even if δ condition is violated), which leads
to higher algorithm complexity. Another major
drawback of SA is that it requires more memory
storage during the updating process.

PERFORMANCE OF LRAES
In this section, we review performance results of
different LRAEs, using either the LLL algo-
rithm or SA, and see why the fundamental con-
dition is met and how much diversity is restored.

As shown in [3], the CLLL algorithm upper
bounds od(H~) by a constant strictly less than 1,
indicating that the output matrix H~ is constrained
within a certain distance from orthogonality.

Therefore, LEs based on (2) collect the same
diversity as that exploited by near-MLEs based on
H~ because the fundamental condition is met. How-
ever, as explained earlier, the constellation of z is
extended to the whole Gaussian integer ring, which
is infinite. Therefore, in the first quantization step
to obtain ẑ with low-complexity equalizers, under a
finite-bit number representation (e.g., in practical
systems and simulation tools), LRAEs achieve only
the asymptotic diversity that may be less than the
diversity of MLE [12]. It has been proved in [3] for
i.i.d. channels that LLL-aided low-complexity
equalizers collect diversity order M, which is the
same as MLE. However, the infinite constellation
of z and finite bit representation lead to the failure
of LLL-aided LEs to collect the same diversity as
MLE on some systems in simulations [12].

Similar to the LLL algorithm, if Seysen’s met-
ric S(H~) is upper bounded by a finite constant, it
can be shown that SA-aided low-complexity equal-
izers collect the same diversity as MLEs. With a
finite bit representation, the asymptotic diversity
for infinite constellations is guaranteed. It was
proved that for 2 × 2 systems, SA upper bounds
the Seysen’s metric of the output matrix H~ by a
finite number. For an N-D lattice, the simulation
results show the existence of a finite upper bound,
but it is not proved theoretically yet. However,
according to the simulation results in [4] and our
own simulation experience, SA-aided equalizers
collect the same diversity as LLL-aided equalizers
for many transmission systems.

We compare the performance of different
LRAEs in Fig. 2 for 6 × 6 systems with i.i.d.
channels and QPSK modulation. Nine different
equalizers were applied on the system. From the
figure, we can see that LRAEs collect diversity
6, the same as the SD method, although there
still exist performance gaps. Among different
LRAEs, detectors employing the CLLL algo-
rithm and SQRD lead to the best performance.

VLSI ARCHITECTURE
Although LR-aided equalizers achieve high
diversity and thus attract much attention, cur-
rently, there is only one LR VLSI implementa-
tion reported in the literature — the Brun’s

nn

                                                                   

Table 2. Number of basis updates needed for different LR algorithms for i.i.d. channels.

M = N = n 2 4 6 8 10

Greedy SA
Average 1.0733 5.4579 11.1725 16.9698 22.0766

Std. deviation 0.6378 2.3032 4.4139 6.9265 9.3423

Real LLL
Average 3.5204 19.0711 46.5706 84.7531 132.36

Std. deviation 2.7614 9.6056 21.5811 39.5851 61.8293

Complex LLL
Average 1.1151 6.6624 16.2276 29.0076 44.2684

Std. deviation 0.6963 3.0824 7.0284 12.6450 19.4835

Complex LLL with SQRD
Average 1.0505 5.7555 13.4083 23.3189 35.2554

Std. deviation 0.6208 2.6426 5.9486 10.3063 15.5275
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algorithm-based channel pre-coder described in
[10]. However, Brun’s algorithm requires lower
average complexity than the CLLL algorithm but
achieves inferior performance, and no analytical
result has been reported to prove the diversity of
LR-aided equalizer with Brun’s algorithm. Thus,
there is a need for a hardware implementation
of the CLLL algorithm, which includes QR-
decomposition as the pre-processing step and
the main CLLL process. The QR-decomposition
was implemented efficiently using Given’s Rota-
tions (see references in [10] and [13]), but the
main CLLL process remains unexplored. Exami-
nation of the main CLLL process in [3] reveals
that this algorithm may not be applied on hard-
ware directly. However, by considering the
nature of the CLLL algorithm and exploiting the
inherent parallelism, we arrive at a hardware
architecture suitable for VLSI implementation.

Because SQRD results in the main CLLL pro-
cess requiring fewer basis updates, both in average
and variation, we adopt the SQRD as the prepro-
cessing step to make the complexity of the CLLL
algorithm “less random.” To satisfy the size reduc-
tion condition of the CLLL algorithm, we adopt
Newton-Raphson iterations with a small look-up
table for initial values to implement the integer-
rounded division required by the CLLL algorithm.
The δ-condition checking of the CLLL algorithm
is implemented through a well-understood and
numerically stable algorithm, Householder COor-
dinated Rotation DIgital Computer (CORDIC),
which is adopted to rotate a 3-D real vector by
“vectoring” to a principal axis using iterative, low-
hardware, complexity operations. Then, if the δ-
condition is not satisfied, we use the inverse of the
vectoring Householder CORDIC operations to
find the unitary matrix to rotate R~ as shown in [3].
After further considerations on scheduling design,
we propose a superscalar CLLL processor in Fig.
3 with a data path consisting of a Householder
CORDIC module, reduced-precision division
pipeline, and shared complex multiplication
pipeline. Multiple control loops, as opposed to a
single central controller coupled with a simple
arbitration scheme, enable the CLLL processor to
take advantage of the parallelism in scheduling.

Figure 4 shows the results of the simulations
using fixed-point arithmetic with [G,F]-bit,
where G and F are the numbers of integer and
fractional bits, respectively. We adopt the 4 × 4
V-BLAST transmission as an example. The sig-
nal constellation is 4-QAM, and LR-aided ZF-
DFE is employed at the receiver. We plot three
curves for the same system but with floating-
point, [13, 13], [10, 13], [13, 10], and [10, 10]-bit
fixed-point representations for the R

~
matrix,

respectively. The figure shows that the perfor-
mance of the system with [13, 13]-bit fixed-point
arithmetic is nearly the same as that of a float-
ing-point implementation, which verifies our
hardware implementation.

IMPLEMENTATION RESULTS
We implemented the proposed architecture in
hardware using the verilog hardware description
language, verifying the implementation using a
co-simulation tool we developed. We then used
Synplify Pro with the retiming and pipelining

options enabled for synthesis and Xilinx ISE 9.1
for place and route. Implementation on a Vir-
tex4 FPGA results in a design that has a maxi-
mum clock frequency of 140 MHz, an average
processing latency of 928.6 ns, and requires
88,308 gate equivalents (10 real multipliers and
3617 Virtex4 slices). Implementation on a Vir-
tex5 FPGA results in a design that has a maxi-
mum clock frequency of 163 MHz, an average
processing latency of 797.5 ns, and requires
78,683 gate equivalents (10 real multipliers and
1712 Virtex5 slices). For both implementations,
fixed-point representations of [1, 12] for the Q
matrix, [13, 13] for the R matrix, and [13, 0] for

n Figure 2. Performance of LRAEs with M = N = 6.
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the T matrix are assumed. Comparison to other
architectures is difficult because no VLSI imple-
mentation of an LR-aided low-complexity equal-
izer that collects the same diversity as MLE has
been reported in the literature. Because the pro-
posed architecture requires few multipliers and
modest FPGA resources, multiple CLLL proces-
sors could be realized on a high-end FPGA to
achieve a desired throughput for a particular
LR-aided hard detector. For a given channel
matrix, the CLLL processor can begin operation
after the first column of the QR-decomposition
is computed, partially hiding the latency of the
CLLL processor. Furthermore, additional area
reductions and performance gains can be
achieved by optimizing the VLSI implementa-
tion for a particular channel model and low-
complexity equalizer as done in [10]. Currently,
we have found that further algorithm and hard-
ware optimizations lead to improved results,
including lower average cycle count, lower frac-
tion and integer bits, and lower hardware
resource requirements.

CONCLUSIONS
Among different detectors for linear block trans-
missions, traditional low-complexity equalizers
are favored for their cubic order polynomial
complexity, but they often suffer from diversity
loss. When the channel is constrained within a
certain distance from orthogonality, low-com-
plexity equalizers achieve the same diversity as
MLE. LR techniques are one approach to
impose a constraint on the orthogonality of the
channel matrix while maintaining the low-com-
plexity property. After a thorough investigation
of LR algorithms, the CLLL algorithm with
SQRD is selected to be implemented in VLSI.
The proposed architecture and implementation
results are presented. The encouraging results
summarized in this article demonstrate that
LRAEs are an attractive solution for future
wireless receiver designs.1
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n Figure 4. Hardware fixed-point simulations of an LR-aided ZF-DFE for a 4
× 4 V-BLAST transmission using a variety of bit precisions.
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