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A generative model for the Mycenaean Linear B script and its application in
infilling text from ancient tablets

KATERINA PAPAVASSILEIOU and DIMITRIOS I. KOSMOPOULOS∗, University of Patras, Greece

GARETH OWENS, Hellenic Mediterranean University, Greece

We present a generative neural language model for the most ancient proven stage of the Greek language, the Mycenaean Greek
attributed by the Linear B script. To capture the statistical structure of the Mycenaean documents we present a Bidirectional Recurrent
Neural Network and compare it to the traditionally used𝑛-grams. The model is used to supplement the damaged parts of the Mycenaean
texts, namely the incomplete, to a greater or lesser extent, words, which are typically discovered on partially damaged clay tablets. We
verify our method experimentally using ground - truth, then we demonstrate our results on real cases and compare with experts’
opinions. We also present a methodology to augment our dataset, which turns out to improve our results.
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1 INTRODUCTION

The Mycenaean Linear B script constitutes one of the writing systems used in the Aegean region in the second half
of the second millennium B.C.E. It is a syllabic script deciphered by Michael Ventris [1], [2] and announced on 1-6-
1952. He proved that the syllables of the Linear B script form words of the Greek language and that the Mycenaean
world was both linguistically and culturally linked to ancient Greece. The Mycenaean Linear B texts, though brief,
provide valuable information about the development and evolution of the Greek language throughout the centuries.
However, the importance of Mycenaean documents is of interest, not only for linguistics and epigraphy, but also for our
understanding of ancient religion and economies, sociolinguistics, literacy studies and ancient history, since those texts
may provide information on the political and administrative organization, the social structure, the economic activity,
the religion and the military organization of the Mycenaean kingdom [3–5].

The Mycenaean Linear B script is recorded mostly on clay tablets [6], [7] (c. 5500 have been recovered to date).
The main difficulties in studying these clay inscriptions are: a) Their eminently administrative content. Many of the
Mycenaean tablets are made up of simple lists, revealing less than expected about their syntactic structure. b) Their
subject, which complicated the decipherment of the Linear B script. As they deal extensively with people and places,
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2 Papavassileiou, Kosmopoulos and Owens

Fig. 1. On the left, the image of the Mycenaean tablet KN As 1516 (image copyright belongs to the Hellenic Ministry of Culture and
Sports - “Hellenic Organization of Cultural Resources Development”). On the right, the transliterated text of the KN As 1516. The
illegible parts are indicated by square brackets.

inevitably a large number of words contained in the tablets are proper nouns. While the human names were the starting
point for deciphering the Persian cuneiform script, as they concerned the already known names of Persian kings, they
could not offer help in the case of Linear B, where they concerned the names of completely humble people [8]. c) Their
state of preservation, since most of them are broken, worn or burned, to a lesser or greater extent. Due to physical
damage, many Mycenaean syllables from these documents are missing (see Fig. 1). Therefore, notable pieces of our
ancient cultural heritage may have been lost. Although the Mycenaean texts are mostly lists of supplies entering,
leaving or stored in palaces and telegraphic inscriptions of goods, they are useful as primary sources for the economy,
trade, religion, social stratification and administrative organization of the Mycenaean Greece.

Currently, the efforts to study and restore the Mycenaean tablets have been done manually by a handful of experts
[2, 6, 9–19]. It is a long and time-consuming process, which requires extensive knowledge in the specific genre and
corpus. When it comes to restoration, for the resulting infillings it is hard to quantify the degree of certainty for each one
of them. To mitigate those issues it would be ideal to have an automated system to assist the experts by recommending
possible infilling alternatives of the missing parts and by sorting the probabilities of each of those recommendations,
based on the available corpus. In this paper we propose such a tool for infilling Mycenaean Linear B damaged tablets.

This article contributes by presenting a generative model for the Mycenaean Greek language attested by ancient
tablets. To this end, we train a language model using a Recurrent Neural Network (and namely a symbol-level RNN,
where a symbol corresponds to a Mycenaean syllable or a Mycenaean logogram). We use data that we have collected
Manuscript submitted to ACM
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and curated using the available textbooks [20] and the electronic corpora [21]. Furthermore, we exploit this model to
predict the missing syllables on tablets that are partially damaged.

The rest of the paper is organized as follows: In Section 2 we present the related work regarding the efforts made on
other languages and the related methods. In Section 3 we present the dataset that we collected for our experiments.
In Section 4 the data augmentation techniques are described in order to make our dataset sample larger. Section 5
demonstrates the proposed methodology for language modelling and for missing symbol recovery. Section 6 shows the
experimental results. Finally, in Section 7 we present our conclusions and the future work.

2 RELATEDWORK

Our work is related to the concept of language modeling. A generative language model (LM) calculates the probability
of occurrence of a particular sentence/word/character within a specific context/topic, by analyzing a body of similar
training texts in the same context or topic. In this way, statistical and probabilistic techniques are developed capable of
predicting and determining the probability of occurrence in a sequence, if for example the LM operates at the level of
words (sentences, characters, etc.). To this end recurrent neural networks have been used in a generative fashion at the
word level, e.g., [22], at character level, e.g., [23], or hybrid, e.g., [24]. Such models though valuable for text generation,
do not typically consider the text after the missing part, which may contain valuable information.

Some of the simplest models are the 𝑛-gram models. These are probabilistic models for predicting the next item in a
sequence of 𝑛 elements and can be used to model almost any type of sequential data. They have been used for machine
translation [25], but also for ancient documents restoration [26]. The benefits of 𝑛-gram models are their simplicity and
scalability. With larger 𝑛, a model can store more context, enabling small experiments to scale up. However, when 𝑛

increases, the out-of-vocabulary 𝑛-grams increase noticeably and actually undermine the performance of the model.
Therefore, the 𝑛-grams are not appropriate to model long dependencies and more elaborate models are needed.

The problem of text infilling, (i.e., the task of predicting missing spans of text - typically whole words), has been
reported in the literature for contemporary texts, for which typically large volumes of data are available. It is the
generalization of the cloze task, in which the goal is to find the missing word by using context [27]. Frameworks like
BERT [28] that are based on the Transformer network can consider previous and following text, but require large
volumes of data and fixed span. Fedus et al. use GANs requiring a fixed span as well [29]. Donahue et al. present an
infilling framework that is able to capitalize on existing language models [30]. It has been tested on different domains
such as short stories, scientific abstracts and lyrics. Similar methods that update their estimate in an iterative way are
presented in [31] and [32]. Shen et al. propose a Blank Language Model (BLM) which looks ideal for text generation
tasks [33]. BLM generates the missing fragments by jointly modeling context and missing content. It supports the
control of generation location and produces consistent infilling of variable length. BLM is testing on three experiments:
text infilling [31], ancient text restoration [34] and style transfer [35]. In all experiments, the sequence representations
in BLM are obtained using the encoder module of transformer base [36]. In text infilling task, they experiment on a
dataset which has 100K/10K/10K documents for train/valid/test respectively, with a maximum length of 200 words for
each document. A lot of data is required for the success of the model as well.

The problem of text restoration through infilling in ancient texts is attracting more and more attention from the
research community. Though the results from the Natural Language Processing (NLP) community have been only
partially applied, obviously due to the lack of sufficient data. Some of the most representative such works are briefly
described in the following.
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4 Papavassileiou, Kosmopoulos and Owens

Roued-cunliffe uses a decision support system called DUGA for reading ancient documents in the Latin language
found in Vindolanda (Britain) [37]. She uses the so-called cruciverbalistic approach: it begins by establishing the letters
that are legible and uses them as a foundation for a subsequent hypotheses. A knowledge-base of previously interpreted
documents from the same period is used to extract word lists and frequencies. These are then used to suggest different
interpretations of words and letters, as well as missing parts, using a hierarchical approach from individual symbols
to whole sentences. The system is therefore largely based on the experts’ decisions. Kang et al. present a multi-task
learning approach based on the Transformer networks to effectively restore and translate ancient historical documents
based on a self-attention mechanism, specifically utilizing two Korean historical records, one of the most voluminous
historical records in the world [38]. This work combines 3 different studies: the restoration of damaged documents
(recovering), neural machine translation (translating), and the analysis of historical records (mining). The proposed
model consists of embedding and output layers for Hanja and Korean, and three Transformer modules: the shared
encoder (for both the restoration and translation tasks), the restoration encoder (for the restoration task), and the
translation decoder (for translating Hanja sentences into modern Korean sentences). In order for these tasks to succeed,
it is necessary using a large-scale training corpus.

Similar to our work is the PYTHIA system [34] and its follow-up system Ithaca [39]. It aims to fill the missing
symbols (characters) in ancient Greek inscriptions. The authors use a sequence-to-sequence framework [40] with LSTM
networks in the encoder and the decoder. The encoder involves the input character embeddings sequence with missing
characters, and a separate stream is also modelled using the word sequence as embeddings as well; an attention layer is
also used. The decoder is trained to output the missing characters. They use a dataset that results from processing the
epigraphical corpora of the Packard Humanities Institute [41], the PHI-ML. As Shen et al. argue in their ancient text
restoration experiment [33], Assael et al. perform restoration at the character-level where the number of characters
to recover is assumed to be known and indicated by a corresponding number of ‘?’ symbols [34]. In reality, when
epigraphists restore a deteriorated document, the length of the lost fragment is unknown and needs to be guessed as a
first step. BLM, in essence a variant of BLM, the L-BLM, can bypass this limitation and flexibly generate completions
without this additional knowledge. A single token, sized equal to the number of ’?’ symbols, is defined and the L-BLM
is trained to predict a character to fill in and the length of the new blank to its left. Compared to our work, the problem
presented by the authors of these articles [33, 34] is similar in the sense that it concerns a known script and known
language and uses a machine learning architecture. However, our task is more challenging, due to the fact that our
corpus is of much smaller size (over 40000 inscriptions available in the aforementioned articles versus 1100 inscriptions
in ours). This means that sequence-to-sequence architectures, requiring the calculation of many weights, cannot be
effectively trained in our case.

Fetaya et al. use recurrent neural networks (LSTMs) to restore fragmentary Babylonian texts [26]. These involve
ancient texts in the Akkadian language, which belong to the Semitic language family. Comparisons to simple 2-
gram baseline approach (considering the previous and the next word) are made, resulting in better performance. The
experiments use a dataset of 3000 transliterated archival documents belonging to economic, juridical and administrative
genres. Similarly to this work, Lazar et al. also introduce BERT-based models aiming to solve the task of predicting
missing signs in Akkadian texts [42]. The difference with the previous article [26] is that the completion of missing
signs is done by combining large-scale multilingual pretraining with Akkadian language finetuning. Although Fetaya
et al. have little data at their disposal to train the learning algorithm (c.3000 Babylonian transliterated texts, 539-331
B.C.E.), much more than ours (c. 1100 Mycenaean clay tablets, 1400-1200 B.C.E.), but unquestionably a small amount of
data, what is emphasized by the authors is that the late Babylonian texts are a genre with highly structured syntax.
Manuscript submitted to ACM
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These are structured official bureaucratic documents, e.g. legal proceedings, receipts, promissory notes, contracts and
so on. This is in stark contrast to our own work, which is a task significantly impeded by syntactic inconsistencies. This
is proved by the fact that the pre-processing of our data, i.e. the management of each Mycenaean tablet [43], is not a
simple matter but require special handling, so as to extract valid sequences of Mycenaean words in accordance with the
principles of Mycenaean language.

There are also several works dealing with translation or decipherment of ancient languages, which are not directly
related to our work, but could potentially benefit from it, since they assume no missing symbols. Some indicative such
works are given in the following. Snyder et al. demonstrate automatic decipherment by using a Bayesian network
that incorporate linguistic constraints using non-parallel corpora of Ugaritic and Hebrew [44]. Then, Berg-Kirkpatrick
& Klein use a combinatorial optimization method on the same data [45]; they present a simple objective function to
solve the decipherment and cognate pair identification problems. Luo et al. try to do decipherment of Ugaritic and
Linear B using non-parallel corpora, by aligning words from the ancient language to words of the known one [46]; they
employ a sequence-to-sequence model (biredictional-LSTM as the encoder and a single layer LSTM as the decoder)
with additional linguistic constraints. However, Luo et al. in their article [47] argue that the methods described in [46]
are based on assumptions that are not applicable to many undeciphered scripts and they propose a decipherment model
to extract cognates from undersegmented texts, without assuming proximity between lost and known languages. The
model is evaluated on both deciphered languages (Gothic, Ugaritic) and an undeciphered one (Iberian). Page-Perron et
al. aim for the translation of ancient Sumerian texts to English using neural machine translation and a parallel corpus
of about 3000 texts [48]. Another attempt to implement automatic translation into cuneiform languages is presented
in the article [49]. Punia et al. are experimenting with various architectures and claim that using pretrained word
embeddings in sequence-to-sequence models with attention can achieve the best performance in the sparse data setting.
Finally, Park et al. propose the first ancient Korean neural machine translation model using a Transformer [50]. They
also contribute by suggesting the Share Vocabulary and Entity Restriction BPE (SVER BPE), which is a new subword
tokenization method based on the characteristics of ancient Korean sentences. They claim that SVER BPE achieves
better results than conventional subword tokenization methods (like BPE and SentencePiece).

In our previous article ([43]), we describe the methodology to create a preliminary version of our Mycenaean
dataset comprising text sequences of the Mycenaean Greek language. We have set up a preliminary experiment using a
discriminative model, namely a Conditional Random Field to predict the missing parts. In that work, we do not consider
the information after the gap and we do not quantify the certainty level, as well as the other valid options. Here we are
addressing these drawbacks. Furthermore, we provide a data augmentation method to handle the lack of data.

3 THE DATASET

We will provide a brief description on how the sequences from the Mycenaean inscriptions were extracted and why
specific standards were introduced in order to create the Mycenaean dataset. For more details the interested reader can
refer to our previous work [43].

Considering the absence of strict syntactic rules in the Mycenaean language [8, 17], it might seem difficult to extract
any structure out of the Mycenaean inscriptions/documents. However, the experts have argued that there is still some
structure that can be exploited, which is closely related to the way that we have to read them [8, 51]. The way of creating
the sequences, and how the Mycenaean tablets are read, is a key factor in extracting the Mycenaean language structure
and in capturing the meaning. The modeling task may be crucially impeded though, by the syntactic inconsistencies of
the language, as well as by distinctions among scribes.
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6 Papavassileiou, Kosmopoulos and Owens

Here, we present briefly the Linear B script and its transcription. TheMycenaean Linear B script uses two basic symbol
systems, one phonetic and one logographic. The symbols of the phonetic system are called syllabograms-syllables.
The phonetic system is usually represented transcribed, i.e., the syllable is rendered in letters, and in most cases by
a combination of consonant and vowel. The syllabary, namely the system of the phonetic symbols, includes at least
87 different syllables. Of these, a very limited number (about fourteen) has not yet been transcribed, i.e., its phonetic
value is not known with certainty. José L. Melena writes in [52] that their resistance to decipherment is due to the
scanty evidence available and/or to the fact that they appear mainly in personal names and place-names of non-Greek
origin. For the symbols of the logographic system, the term ideograms is usually used. Such symbols need not be
representations of the objects themselves and clearly do not refer directly to ideas, events or concepts but rather,
to words of the Mycenaean language. Hence, the term logogram is preferable to the widely used, and less accurate
term, ideogram [52]. The logographic signs are 143 in number. For the representation of logograms a conventional
transcription is used, based mainly on the abbreviation of the Latin name of the represented object or being, e.g., VIR
‘man’, MUL(ier) ‘woman’. If the ideogram has not been identified, then the abbreviation is written with an asterisk
followed by a three-digit number. In addition to the phonetic symbols and the ideograms, there are also numbers that
follow the decimal system and measurements units of weight and capacity [51, 53].

The Mycenaean dataset contains sequences of Mycenaean words, of typical length of six to ten syllables, in tran-
scription, i.e., sequences of phonetic values as they have been identified and attributed to the syllables of the Myce-
naean Linear B script. In order to generate this dataset we used the available Linear B texts in the related literature:
[4, 6, 8, 17, 20, 51, 54, 55]. These works refer to texts mostly written on clay tablets (but also on clay vases, stamps and
tags), and were found throughout Mycenaean Greece (Knossos, Khania, Pylos, Mycenae, Tiryns, Sparta and Thebes).

The separation of the Mycenaean sequences was based on the following observations. The divider (short upright
line on the tablets, conventionally represented by a comma on the transliterated texts) is a word-separation symbol.
Furthermore, we assumed that numeric and metric signs are followed by new sequences. This way, we sorted the signs
which occur in groups, i.e., the words, as well as the ideograms. The numeric signs and measurement units of weight
and capacity were excluded from the dataset. An example of sequences created by two Mycenaean tablets is displayed
in Figure 2.

Records of artifacts, livestock, staples, etc. are only rarely indicated by words syllabically written; mostly the scribes
use symbols, which stand for the commodity in question, the logograms (or ideograms) [51, 53]. In some cases the
ideograms are presented after the word they describe, confirming and identifying the information provided by the
tablet. In many other cases the information is derived exclusively from the ideograms. So, the semantic value of the
Mycenaean ideograms plays an important role, as it did in the decipherment of the Linear B script, and could not be
missing from our database of sequences of Mycenaean words.

The Linear B inscriptions are classified into categories, the so-called series, depending on the object to which they
refer; many of these categories are subdivided in order to state classifications of different content [8]. Usually the tablets
that belong to the same series have a similar structure. This is also reflected on the sequences of our dataset that come
from the same or different series. For example, Figure 2 shows the sentences resulting from two tablets belonging to
different series, namely series D and series L. They appear to be similar, i.e., both involve a group of large-sized syllables
(words) on the left side of the tablet and two rows of groups of smaller syllables (words), usually separated by a dividing
line, on the right side; however their content is rendered differently. According to [51], the text from the tablets of series
D of Knossos, starts from the second line and continues on the first, as shown in Figure 2 (left). On the other hand, from
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Fig. 2. Mycenaean sequences from the series D (left the image of the Mycenaean tablet KN Db 1155 + 5378 + 5688 and L (right the
image of the Mycenaean tablet KN Lc 525) (the copyright of the images belongs to the Hellenic Ministry of Culture and Sports -
“Hellenic Organization of Cultural Resources Development”). Translation of the left Mycenaean tablet (the phonetic version of the
words is provided in parentheses, as they would be pronounced in the then Mycenaean Greek) "Wi-jo-ka-de (Wiokados - human name,
the shepherd): at Da-wo (Dawos - place name) collection of We-we-si-jo (Werwesios - human name, the collector), eighty-six rams and
fourteen ewes". Translation of the right Mycenaean tablet "From Se-to-i-ja (Setoijai - place name): 40 carpets of royal type (wanaktera),
100 measures of wool and 3 cloths of tu-na-no type (the meaning of the word ’tu-na-no’ is unknown, may not be Greek). .

the tablet of series L emerge two sequences, since the word in large syllables refers to both rows of the right part of the
tablet.

The reason we chose to build a symbol-level language model instead of a word-level one, that could also be valid, is
related to the nature of the text corpus we have at our disposal. It is important to note that the Mycenaean clay tablets
were annual draft censuses typically used for daily economic-administrative notes, and were destroyed after a period
of time (financial year) to reuse clay for new recordings. As a consequence, the surviving documents in Mycenaean
linear B are a minimal part of the total of written testimonies, since they are believed to date back mainly from the
last year before the destruction of the Mycenaean administrative centers. So, in this last annual census of Mycenaean
palaces, it was rather hard to find repeating words, due to the large vocabulary and due to the limited corpus size. On
the other hand, syllables are far fewer and frequently repeated and thus easier to model. The predominantly economic
necessity that prompted the invention of writing on Crete makes the inscription rather brief and terse, often resulting
in sequences consisting of even single words. Such one-word sequences would not be very helpful in a word-level
language model. In summary, to infill the damaged parts of the Mycenaean tablets we preferred our model to operate at
the level of symbols, namely the Mycenaean syllables, which form words; these syllables in turn form the Mycenaean
sequences.

To build a symbol-level language model and use it to generate Mycenaean texts, it is first necessary to define a
training set comprising a corpus of Mycenaean sequences. In our case the training set, in the experimental parts,
consists of the tablets of series D. The next step is the tokenization, i.e., the process during which the sequence is split
into its constituent elements, in our case symbols corresponding to syllables and logograms (ideograms), and for each
token a unique identifier is assigned. Each token is represented by a one-hot encoding vector including the space token.
Consider the sequence “wi-jo-ka-de da-wo we-we-si-jo 𝑂𝑉 𝐼𝑆𝑚 𝑂𝑉 𝐼𝑆 𝑓 ” resulting from the series-D Mycenaean tablet
in Figure 2. The tokenization of this Mycenaean sequence, namely its map to the individual symbols in the Vocabulary,
leads to 16 input tokens (see Table 1).
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wi-jo-ka-de da-wo we-we-si-jo 𝑂𝑉 𝐼𝑆𝑚 𝑂𝑉 𝐼𝑆 𝑓

wi jo ka de da wo we we si jo 𝑂𝑉 𝐼𝑆𝑚 𝑂𝑉 𝐼𝑆 𝑓

Table 1. Example sequence and its tokenization including syllables and ideograms.

The corpus consist of the tablets of "series D" of Knossos, which is the largest classification; it comprises the accounts
of the sheep herds of Crete, in around 1100 tablets. The fact that the origin of these tablets (i.e., the centre in which
they were found), in contrast to the documents of the other series, is unique (Knossos), as well as the fact that the
majority of them (c. 686-720 tablets) are probably written by the same scribe (Hand 117 [21]), serve in their best possible
processing but mainly in the application of the augmentation techniques. For this reason, as a first step, we choose a
single category of tablets and prefer not to mix many categories together to exploit the homogeneity observed in the
structure of a single category. The repetition of similar patterns is important for machine learning.

From those tablets we extracted 513 complete sequences, without missing syllables, which was the training set of the
model. The remaining sequences were more or less damaged, making about 145 Mycenaean sentences, which were
hard to read. We defined a Vocabulary of [77 syllables, space, 23 ideograms]. The most frequent ideograms in this series
were: 𝑂𝑉 𝐼𝑆 𝑓 = female sheep, 𝑂𝑉 𝐼𝑆𝑚 = ram, LANA = wool.

Most of the time the syllables are placed one after the other so as to form recognizable words. But they can also be
used in other ways, as for example individually. When a syllable is used individually, it operates either as a ligature or
an adjunct or as an abbreviation of a word. It is common for an ideogram to join with a syllable (ligature). Ligatures do
not appear in the D series we are dealing with. A syllable can be placed on top of an ideogram, thus forming a syllabic
definition (adjunct). A common such example in the D series is the 𝑛𝑒𝑂𝑉 𝐼𝑆𝑚 which identifies the animal as young
(ne-wo). Finally, in the category of our interest there are several words that are abbreviated and refer to the animals
and wool, i.e., exclusively to the ideograms of the category. For example, 𝑝𝑎𝑂𝑉 𝐼𝑆𝑚 , 𝑝𝑒𝑂𝑉 𝐼𝑆𝑚 and 𝑜𝐿𝐴𝑁𝐴, where
the syllables pa, pe and o are abbreviations of the words pa-ra-jo/ja (=’old’), pe-ru-si-nu-wo (=’last year’s’) and o-pe-ro

(=’dept’) correspondingly. All these cases contribute to the creation of 19 additional ideograms beyond the three basic.

4 DATA AUGMENTATION

It is generally known that the amount of data used for training impacts the model performance. In our case the sequences
resulting from Mycenaean texts, are rather scarce especially when we limit our model to a single series, such as series
D, see Section 6. Augmentation methods, namely methods used to generate additional, synthetic data using existing
data, are also gaining popularity in NLP applications [56]. Here the data augmentation has to be done carefully due to
the structure and the semantics of the language.

In order to augment our training dataset, and make the model generalize better, we provide the following methods-
rules, fully interwoven with the structure of the Mycenaean tablets and the Mycenaean reality [2, 6, 7, 51], i.e., the place
names (toponyms), the professions, the institutions and the hierarchy of the Mycenaean society.

The rules analyzed below concern series D, and were used to conduct the experiments of Section 6:

(1) Most of the tablets of series D show the toponym (‘PN’) of the administrative area together with the name of the
responsible shepherd (‘MN’). Sometimes a second name appears that is of the wool collector, more specifically of
the owner of the herd (‘mn’) [6, 51]. So, most tablets follow the structure:

MN (shepherd) PN (toponym) mn (owner/collector)
Manuscript submitted to ACM
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In some cases a slightly different structure appears:

MN (shepherd) mn (owner/collector) PN (toponym)

So, the first rule concerns the swapping of words referring to the toponym and the owner. This can only happen
if and only if the Mycenaean tablets embody these words, which represent these names (word categories). The
method of swapping the specific words produced 94 more sequences.

(2) A possible link has been established between some toponyms by their simultaneous appearance as a pair on some
cumulative tablets (the Dn collection of series D is a sum collection) [51] [8]. These are given in the following:

Locations close to each other
pa-i-to e-ko-so da-*22-to ti-ri-to ra-ja do-ti-ja ri-jo-no ru-ki-to u-ta-no
da-wo su-ki-ri-ta *56-ko-we-i qa-ra pu-na-so ra-su-to ra-to pu-so qa-mo

When these adjacent areas, appear from the Mycenaean texts, to belong to the same owner, then we consider
safe proceed to mutual substitutions. From this toponyms’ substitutions we produced 21 additional sequences.

(3) Sometimes the standard structure of series D tablets changes either because the owner’s name does not appear
(see tablets in Figures 7 and 8), or because the place name is omitted. So, another technique to augment our
dataset, is to select these words from a Mycenaean sequence that follows the standard structure and remove one
at a time so as to create two new sequences for each case. With the word deletion rule 170 new sequences were
produced.

(4) The fourth rule concerns the abridged structure

MN (shepherd) PN (toponym)

On these Mycenaean tablets, the owner’s name is omitted. In any such case, we can create as many sequences as
the owners of each toponym, resulting from the tablets that follow the normal structure. This method of owner
insertion resulted in 440 new sequences.

These augmentation rules offer 725 additional samples. The maximum number of rules applied to a sequence is four.
This means that they are generated up to four new sequences from each original one. On the other hand there are
sequences that are not addressed by any augmentation rule. Therefore this process introduces bias in the estimation,
since through augmentation some sequences practically take more weight than others. To alleviate that, we introduce
some random repetitions of the sequences or their derivatives through augmentation, so that each sequence or its
derivatives appear exactly five times in the dataset. Thus, the duplicate samples presented on the network are 1327.

5 METHODOLOGY

In this Section we describe the background on the related work we use in our methodology, i.e., Recurrent Neural
Networks (RNNs), and Bidirectional Recurrent Neural Networks (BRNNs), to train generative models of the Mycenaean
sequences.

The recurrent neural networks (RNNs) are artificial neural networks where connections between nodes form a
directed graph along a temporal sequence. Therefore, the graph can represent temporal dynamic behavior [57]. The
RNNs can use their internal state to process sequences of variable length, and therefore they are popular for doing
tasks such as speech recognition, video processing or machine translation, etc.

The RNNs are plausible for learning sequential data models like text documents. However, they suffer from short-term
memory which can’t capture the long-range dependencies that may exist in large sequences. Their gradient shrinks
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10 Papavassileiou, Kosmopoulos and Owens

noticeably as it back-propagates through time (vanishing gradient); when it becomes too small, the gradient does not
really contribute to model learning. In our case, however, the Mycenaean documents contain rather short sequences
which, do not typically exceed four words; therefore the RNNs are not expected to suffer seriously from such issues in
our application. The more advanced versions of sequential models like the Long Short-Term Memory (LSTMs) [58]
and the Gated Recurrent Unit (GRUs) [59] include internal mechanisms (gates) that overcome the aforementioned
problem and allow them to model effectively much longer sequences; however, in short sequences these mechanisms
introduce rather unnecessary overhead, i.e., higher number of parameters that need to be learnt. To learn so many
parameters without overfitting requires larger amount of representative training data, which are very difficult to obtain
in applications like ours.

Given the typical length of the Mycenaean sequences and the size of our dataset we built our models based on a
simple RNN architecture. That architecture is presented in Figure 3, where the following notation is used:

• x𝑡 ∈ {0, 1}𝑑 is the input vector at time step 𝑡 , where 𝑑 is the vocabulary size.
• 𝜶 𝑡 ∈ R𝑚 is the activation vector that stores the values of the hidden units at time step 𝑡 ,𝑚 is the number of
hidden units.
• y𝑡 ∈ R𝑑 is the output vector of the network at time step 𝑡 .
• W𝑎𝑥 ∈ R𝑚𝑥𝑑 are weights associated with inputs in hidden layer.
• W𝑎𝑎 ∈ R𝑚𝑥𝑚 are weights associated with hidden units in hidden layer.
• W𝑦𝑎 ∈ R𝑑𝑥𝑚 are weights associated with outputs from hidden layer/ with hidden layer to output units.
• b𝑎 ∈ R𝑚 is the bias associated with the hidden layer.
• b𝑦 ∈ R𝑑 is the bias associated with the output layer/ is the bias relating the hidden units to the output.

The RNN at time 𝑡=1 computes the activation 𝜶 1 from input 𝜶 0, typically set to zero vector, and from x1, which is
set to a predetermined vector signifying the start-of-sequence symbol (<SOS>), as follows:

𝜶 0 = ®0, x1 =< 𝑆𝑂𝑆 > (1)

𝜶 1 = 𝑓1 (W𝛼𝛼𝜶 0 +W𝛼𝑥x1 + b𝛼 ) (2)

where 𝑓1 is the 𝑡𝑎𝑛ℎ function.
Then, we obtain an estimation of the output ŷ1, by sampling a softmax function 𝑓2, which is the pdf of the first

symbol as follows:

ŷ1 ∼ 𝑓2 (W𝑦𝛼𝜶 1 + b𝑦) (3)

In the example of the sequence in Table 1 ideally the model should return ŷ1=𝑤𝑖 .
Then the RNN generates the second symbol given the first one, i.e., ŷ2 ∼ 𝑝 (y2 | x1 =< 𝑆𝑂𝑆 >, x2 = 𝑤𝑖), where the

pdf 𝑝 represents the 𝑓2. In a similar fashion, the RNN generates the third symbol in the sequence given the former two
ones, i.e., by sampling ŷ3 ∼ 𝑝 (y3 | x1 =< 𝑆𝑂𝑆 >, x2 = 𝑤𝑖, x3 = 𝑗𝑜). This logic continues to the last time step. In this
way the RNN generates one symbol at a time going from left to right.

So, for the RNN it generally applies:

𝜶 𝑡 = 𝑓1 (W𝛼𝛼𝜶 𝑡−1 +W𝛼𝑥x𝑡 + b𝛼 ) (4)

ŷ𝑡 ∼ 𝑓2 (W𝑦𝛼𝜶 𝑡 + b𝑦) (5)
Manuscript submitted to ACM
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Fig. 3. Recurrent Neural Network Architecture. The input sequence [x0, x1, ..., x𝑛] is the one presented in Table 1 and the missing
syllable is ’jo’. It is predicted as the output of the ’next’ state.

In order to train this Neural Network, the cost function associated with a single prediction is the following:

𝐿𝑡 (ŷ𝑡 , y0𝑡 ) = −
∑
𝑖

𝑦
0,𝑖
𝑡 𝑙𝑜𝑔𝑦𝑖𝑡 (6)

where ŷ𝑡 is the Neural Network’s softmax prediction at time 𝑡 and y0𝑡 is the ground truth one-hot vector. The overall
loss for an entire sequence is the sum over all time steps of the losses associated with the individual predictions:

𝐿 =
∑
𝑡

𝐿𝑡 (ŷ𝑡 , y0𝑡 ) (7)

So, by training this RNN on an appropriate dataset results into a model that it is able to estimate the probability of
the next symbol given the past ones. Given a new sequence, it is possible to figure out the probability of the entire
sequence by multiplying the probabilities returned by 𝑓2 at each time step.

A weakness of the unidirectional RNN described above is that the prediction at step 𝑡 uses information from the
inputs earlier (𝑡 − 𝑛) in the sequence but not information from the inputs later in the sequence (𝑡 + 𝑛), where 𝑛 ∈ N. To
figure out what is hidden in the illegible points of a tablet, it is not enough, and sometimes impossible, to just look at
the left part of the sequence. We definitely need more information.

The bidirectional recurrent neural network (BRNN) can model sequences in forward and backward fashion and
overcomes the unidirectional RNN limitations. The Figure 4 displays such a network architecture, which defines an
acyclic graph; the information flows independently in both directions. The computations from left to right are completely
independent of the computations from right to left. So, the following formulas apply:

−→𝜶 𝑡 = 𝑓1 (W𝑓
𝛼𝛼𝜶 𝑡−1 +W𝑓

𝛼𝑥x𝑡 + b
𝑓
𝛼 ) (8)

←−𝜶 𝑡 = 𝑓1 (W𝑏
𝛼𝛼𝜶 𝑡−1 +W𝑏

𝛼𝑥x𝑡 + b𝑏𝛼 ) (9)
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Fig. 4. The Bidirectional Recurrent Neural Network Architecture. The input sequence [x0, x1, ..., x𝑛] is the one presented in Table 1
and the missing syllable is ’jo’. It is predicted as the output of y1 when in the forward direction the input is x1 =′ 𝑤𝑖′ and in the
backward direction the input is is x1 =′ 𝑘𝑎′

where W𝑓
𝛼𝛼 , W𝑏

𝛼𝛼 , W𝑓
𝛼𝑥 , W𝑏

𝛼𝑥 , b𝑓𝛼 , b𝑏𝛼 are all the model parameters. To get the predictions ŷ in a BRNN, it is
necessary to start propagating information from both directions. When we have computed both of the hidden states for
a time step, we can get the prediction ŷ for that time step using the formula:

ŷ𝑡 ∼ 𝑓2 (W𝑦 [−→𝜶 𝑡 ,
←−𝜶 𝑡 ] + b𝑦) (10)

6 EXPERIMENTAL EVALUATION

The goal of this research is to use the generative model for predicting the missing syllables and thus for infilling the
missing parts of the Mycenaean tablets. To evaluate the performance of the proposed model, we used the dataset created
as described in sections 3 and 4 (available here [60]) and we conducted two experiments:

(A) Initially we synthetically generated incomplete sequences from complete ones after introducing some gaps, so
that we could quantify our results using ground truth data.

(B) Then we applied our model to predict the missing syllables in some real tablets, which were partially damaged
and compared our system’s output to the experts’ opinion.

In the experiment (A), we did a leave-one-out cross validation. Each test sample/sequence was created by removing a
syllable. The special symbol "*" denotes the missing syllable that should be predicted.

In the experiment (B), we used the RNN model trained with all full sequences, augmented data and duplicates as
mentioned in Section 4; we used the selected hyperparameters of (A). Again the special symbol "*" denotes the missing
syllable.

It is important to note that in most cases of the damaged edges of the Mycenaean tablets, the number of missing
syllables is definitely more than one, without knowing the exact length of the word. As demonstrated in Figure 5, the
syllable "mo" is the last of a Mycenaean word located on the cut edge of the tablet. It is difficult to know how many
syllables precede the "mo", so in these cases we could predict the probabilities of the previous syllables in a sequential
fashion. Since we are dealing with a generative model, there is essentially no problem in examining more gaps in a
Manuscript submitted to ACM
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Fig. 5. The image of the Mycenaean Linear B tablet KN Dq 45 (image copyright belongs to the Hellenic Ministry of Culture and
Sports - “Hellenic Organization of Cultural Resources Development”). Translation of the Mycenaean tablet "(missing shepherd’s name):
at e-ra (place name) belonging to a-no-qo-ta (collector’s name), rams".

sequence, whether they are contiguous or scattered in the sequence. The problem, however, lies in the following: a)
in almost all cases we do not know the exact number of missing characters, for example we do not know how many
syllables precede "mo" in Figure 5, unlike the case of the PYTHIA model [34] and b) it is exponentially more difficult to
evaluate the infillings; however someone could use beam search heuristics to focus on the most promising solutions.

6.1 Infilling for synthetic data

In the experiment (A) we gathered all sequences without missing symbols, the 513 resulting from the processing of
series D, the 725 samples resulting from the augmentation techniques and the 1327 duplicates. Afterwards, we randomly
removed syllables from the 513 sequences (neither from the augmented or from the duplicated) in order to test the
prediction capability of the model. The missing symbols may appear in any position including the beginning and the
end of the sequence. In the dataset of experiment (B) (sequences with real gaps), 82.76% of the gaps are in the beginning
of the sequence, 12.41% in the middle words and 4.83% in the end of the sequence. We have tried to replicate that setting
in our synthetic experiment. The gaps are distributed as follows over the sequences with synthetic gaps: in the first
word 84.09% of the gaps, in the middle words 9.67% and in the final one 6.24%.

To evaluate the different models on unseen data, considering the scarcity of data, a variation of Leave-One-Out Cross
Validation procedure was followed, the Leave-"one and its derivatives"-Out Cross Validation, where the derivatives are the
samples/sequences resulting from applying an augmentation step (as described in Section 4) to the real sample/sequence
that is currently left out for testing. So, the samples resulting from augmentation of the current test sample sequences
were excluded from the respective training set to avoid affecting the test results by including sample sequences of
the same origin (through augmentation). Furthermore, only the original sequences were used for testing and not the
augmented or the duplicated ones, in order to obtain results that are comparable to those of the experiment with
non-augmented data. Thus, the machine-learning model is trained 513 times and the final performance estimate is
based on all these runs.

We experimented with various models. The first one was with the baseline 𝑛-gram method using 2-grams and
3-grams. The 𝑛-gram model is a probabilistic language model that estimates the probability of appearance of the 𝑛-th
token given the last 𝑛-1 tokens (past context). It is a Markov model of order 𝑛-1. Similarly, it can be used to estimate the
probability that the next 𝑛-1 tokens begin with the current token (future context). Apart from using past and future
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context separately, we also combined both past and future context within the sequences. The applicability of 𝑛-grams
is known to be rather limited; for small 𝑛 the context used for prediction is also small, while for large 𝑛 most test
sequences of size 𝑛 are never seen in the training set, i.e., the method does not scale well for large 𝑛; therefore we just
used 𝑛=2,3. The results are given in Table 2.

In our following experiments we used two regular/unidirectional RNNs, a forward-directional RNN which captured
information from earlier in the sequence and a backward-directional RNN which captured information from later in the
sequence; finally we used a bidirectional RNN, as described in Section 5. We implemented a function that performs one
step of stochastic gradient descent with gradient clipping. We applied the greedy heuristic approach to search for the
best hyperparameters, ending up with: 𝑒𝑝𝑜𝑐ℎ𝑠 = 60, number of neurons in hidden layer 𝑁ℎ𝑙 = 50, and learning rate
𝑙𝑟 = 0.01.

At this point it is important to refer to the choice of activation functions for the RNNs. As already stated, as an
output activation function, which defines the type of predictions, is set the softmax function, since we are dealing with
a 𝑑-way classification problem. Regarding the choice of activation function for the hidden layer, which controls how
well the network model learns the training dataset, for use both Rectified Linear Activation (ReLU) and Hyperbolic
Tangent (Tanh) functions were considered. Comparing the results of linear and nonlinear activation function used for
hidden layers, better performance is obtained by Tanh. This happens firstly because we do not have too many layers in
our architecture and secondly because our model does not suffer much from the vanishing gradient problem since the
Mycenaean sequences are of rather limited size. The choice of initialization of weight matrices and bias vectors was
also made through various tests. Zero weight initialization as well as weight-values drawn from a normal and uniform
distribution were the first to be tested. "Glorot/Xavier" and "normalized Glorot/Xavier" initializations were used with
Tanh activation function. These two versions of weight initialization are considered the current standard approach of
neural network layers and nodes that use the Sigmoid or Tanh activation function [61]. "He initialization" of weights
was tried with Relu activation function. This version was developed specifically for nodes and layers that use ReLU
activation function [62]. We ended up in “Glorot/Xavier” [63] as the most suitable for use. Given those choices we came
to the results for the RNNs shown in Table 2 (left part) as well.

To demonstrate the benefits of the augmentation step we present in Table 2 (right part) the results of all the used
methods applied only to the original 513 sequences, without augmenting the data.

By considering the results in Table 2, we can infer the following:

• The bidirectional RNN trained with augmented data outperforms the rest of the models especially in TOP-1 and
TOP-5 accuracy and is close to optimal for the rest.
• The augmentation appears to help increase TOP-1 and TOP-5 accuracy for the bidirectional RNN and the
backward RNN.
• The models utilizing future context/backward states are better than the ones using past context/forward states.
This happens most probably due to the high number of missing symbols at the beginning of the tablets; in those
cases it is easier to predict backwards.
• The models that use both directions are typically better than the unidirectional ones, probably due to the fact
that they can better capture the context in both directions.
• The 3-grams outperform 2-grams in TOP-1 accuracy, but perform worse in TOP-10, TOP15 and TOP-20 accuracy.
The 3-grams are more capable to capture the context that gives better TOP-1 predictions, but suffer from
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ORIGINAL AND AUGMENTED DATA ORIGINAL DATA ONLY
method TOP-1 TOP-5 TOP-10 TOP-15 TOP-20 TOP-1 TOP-5 TOP-10 TOP-15 TOP-20

2-gram (past context) 17.74 52.63 62.57 69.59 73.29 18.71 52.63 62.38 69.98 73.10
3-gram (past context) 33.33 53.02 57.89 60.23 61.40 33.72 53.02 57.89 59.65 60.82
2-gram (future context) 14.23 53.61 68.62 77.58 78.95 14.42 53.22 70.18 77.58 78.95
3-gram (future context) 34.50 59.06 67.25 69.20 70.96 34.89 58.28 66.28 68.62 70.57
2-gram (bidirectional) 31.58 64.52 72.32 74.85 75.24 30.99 64.72 72.71 74.85 75.24
3-gram (bidirectional) 44.64 56.34 59.45 60.04 60.62 44.44 55.36 58.67 59.26 59.84
RNN (forward states) 21.44 42.88 55.50 64.52 69.52 22.03 42.69 56.14 64.72 70.37
RNN (backward states) 28.27 53.02 64.91 72.32 76.61 27.10 50.49 61.79 69.79 74.07

RNN (bidirectional) - BRNN 48.34 65.30 71.93 74.85 78.17 46.20 60.43 69.01 74.27 77.97
LSTM (bidirectional) 19.49 33.92 48.93 56.14 61.79 15.79 32.36 46.39 55.95 66.08
GRU (bidirectional) 23.97 38.40 53.41 60.62 66.28 17.74 33.14 46.78 54.39 62.38

Table 2. Estimated scores (percentages) of finding the correct missing symbol among the top-𝑘 most likely symbols (𝑘=1,5,10,15,20)
according to the probabilities estimated by the respective models. In the left half of the table we demonstrate the results when both
the original and the augmented data were used for training, while in the right half we present the results when only the original data
were used.

singletons (about 62% of 3-grams are singletons), which seem to deteriorate the other results. On the other hand
about 52% of 2-grams are singletons.
• The bidirectional 2-gram suffers from low TOP-1 accuracy but performs rather well for the rest.

To have a complete picture, we also implemented and tested both LSTM and GRU networks (using PyTorch) using
a single hidden layer as for the RNN case. The last two rows of Table 2 show the results of the bidirectional LSTM
and GRU. The numbers reveal that both networks do not come close to the success of the corresponding RNN model,
obviously due to overfitting. However the GRU network provides indications for its future use in experiments with
more data, which will result from the processing of other series as well.

Additionally to the above, we evaluated our model assuming that gaps are placed in all possible positions of a
sequence using a uniform distribution. The results for TOP-1/5/10/15/20 accuracy using the proposed RNN architecture
are (59.87%, 70.19%, 73.88%, 75.48%, 76.68%). Obviously infilling with a uniform distribution of gaps is an easier problem
to solve, but does not follow the real gap distribution. Therefore we did not elaborate further in that direction.

This analysis demonstrates that we are able to predict up to a certain extent the missing symbols. It also verifies
that the Mycenaean tablets give indications of grammatical inflection and do contain information about the language
structure [2].

The results from the augmented dataset/corpus encourage the future study of damaged tablets belonging to smaller
series, like for example the series K (24 Mycenaean tablets) which records vessels and series R (30 Mycenaean tablets)
which records weapons.

6.2 Infilling for real cases

In the experiment (B) we aim to verify the applicability of the proposed method in some real cases. To this end we used
the bidirectional RNN model from the previous experiment, which was trained on the whole dataset, including the
samples resulting from the Section 4, since this is the model that gave the best results so far.

We included all the sequences without missing symbols into the training set, as well as the augmented and the
duplicated samples. 145 incomplete sequences (sequences with missing parts), coming from the damaged tablets of
series D (shown in the 4 volumes of the publication "Corpus of Mycenaean Inscriptions of Knossos" [20]), were used as
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Damaged Tablets Sequences BRNN TOP-5
KN Dq 46 + fr. *-sa-no e-ko-so pe-ri-qo-ta-o ’to’, ’ra’, ’ka’, ’ki’, ’ri’
KN Da 1323 + 5243 + 5325 + fr. ke-ti-ro e-ra a-no-qo-* OVIS:m ’jo’, ’ta’, ’we’, ’ja’, ’ro’
KN Dv 1439 ru-na-so qa-* te-ra-po-si-jo ’ra’, ’mo’, ’so’, ’ro’, ’wi’
KN Dv 1621 + 5116 tu-ti e-* pe-ko OVIS ’ko’, ’ra’, ’me’, ’ki’, ’to’

Table 3. BRNN predictions on representative real cases, which include missing symbols at the beginning, in the middle and at the
end of the sequence.

our test set. We provide some indicative results in Table 3. In the first column of Table 3 we present 4 typical cases of
damaged tablets, the second column shows the sequences resulting from those tablets of the first column and the third
column demonstrates the TOP-5 predictions of the BRNN model. These predictions are sorted using the BRNN output
probability in descending order, i.e., the first one gives the most probable syllable according to our model. The full set of
estimated syllables on series D is given in the Appendix.

The infillings proposed by the BRNN system for these representative 4 real cases (see Tablet 3), namely incomplete
sequences resulting from damaged Mycenaean tablets, are commented below:

• On Mycenaean tablet KN Dq 46 it is almost certain that the missing word ’*-sa-no’ belongs to a person’s name. In
the Mycenaean bibliography (namely in all series, not only in D), the following names appear with this ending:
’ka-sa-no’ (KN V 831), ’a-ka-sa-no’ (PY Jn 415 and KN As 602 + 650 + 1639 + fr.), ’to-sa-no’ (PY Fn 79) and
’ja-sa-no’(KN As 1516). Our model also suggests two of them, ’to’ and ’ka’.
• Mycenaean tablet KN Da 1323 + 5243 + 5325 + fr. is worn in its center. It is one of the few tablets for which we
know with great certainty the missing syllable. It is the syllable ’ta’ and it is about the name ’a-no-qo-ta’ in the
nominative or ’a-no-qo-ta-o’ in the genitive, which belongs to the owner of the herd in the specific area. The
syllable ’ta’ is the second choice of the BRNN system. The names of the owners are more often mentioned in the
category D since an owner can be associated with many locations, usually adjacent to each other.
• In the Mycenaean tablet KN Dv 1439 the name of the area (toponym) is ignored. ’qa-ra’ and ’qa-mo’ are the
most likely areas, perhaps the only ones that start with the syllable ’qa’. Both are suggested by the BRNN system
and in fact with ’qa-ra’ being more likely than ’qa-mo’.
• The Mycenaean tablet KN Dv 1621 + 5116 is worn at the point where the place-name is written. The most obvious
answers are the areas ’e-ko-so’ and ’e-ra’. Both syllables, ’ko’ and ’ra’, are included in the suggestions of the
BRNN system.

Analyzing the BRNN predictions for the damaged Mycenaean tablets in Table 3, it is demonstrated:

a) The small size of the Mycenaean sequences. A Mycenaean tablet may offer, for example, only a sequence of two
words, thus confirming their brief nature.

b) The rare repetition of words, mainly human names, confirming that these are aggregate documents of economic-
administrative purposes.

c) The importance of the restoration of the Mycenaean tablets. By contributing to the completion of the Mycenaean
sequences, we actually contribute to the enrichment of the Mycenaean lexicon. Most of the words we are asked
to fill in are unique.

Then, we used the same model to provide our predictions on some sequences for which there are some expert
opinions on the missing parts in the related literature, namely [20]. There are 15 such cases as presented in Table 4. The
Manuscript submitted to ACM
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bibliographic comments on the missing symbol, are shown in the third column, and the results of the model in the
fourth one. The symbol ’bl’ corresponds to the space symbol.

The experts base their guesses mainly on the visual cues, since some small parts of the syllables remain visible, and
not on the sequences’ structure, unlike our method. For example, in the damaged tablet of Figure 6 it is estimated that
the remnant of the missing syllable matches in appearance/schematically with the Mycenaean syllable ’ko’. On the
other hand, we make our prediction based on the grammatical rules of the language.

Six of our TOP-5 predictions agree with the literature recommendations. For cases where there is no identification
between the TOP-5 predictions and the bibliographic annotations, the BRNN predictions were also checked visually
whether they match the remnants on each tablet. For example, in the tablets KN Dv 5236 + 532 and KN Db 5310 +
6062 + 837 (see Figures 7 and 8), we notice that the predictions of our model, and in fact the first, are not completely
irrelevant/unrelated to the remnant. The same goes for the tablet KN Dv 5690 where the bibliography suggests the
syllable ’jo’, du-ni-jo, but also the prediction of the model, ’ja’, can not be ignored since it matches the remnant and also
gives a human/personal name, du-ni-ja, probably female. Tablet KN Dc 7161 + 7179 + 8365 + fr. (Fig. 9) is worn on its
left side, and in fact in the first syllable of the two-syllable word. The bibliography suggests the word ’ke-to’, but the
proposal of our model, ’a3-to’ can not pass unnoticed. Both human names appear in series D and the syllable ’a3’ may
be more in line with the handwriting of the scribe. In the remaining 5 tablets there is no clear correlation between the
model’s predictions and the remnant. In the following we try to give some possible explanations, since there is no hard
evidence available:

• On the tablet Dl 933 (Fig. 6) we find a syllable, ’*83’ (its phonetic value has not been determined with certainty),
which is quite rare and is observed only twice in the training dataset. As a result, the model is probably not
sufficiently trained in such a context.
• The TOP-5 BRNN predictions are not consistent with the remnant in the KN Dv 1213. The model prioritizes other
syllables, probably due to the short sequence length, which conveys rather poor context information. Inclusion
of visual evidence in our model in the future could handle such issues.
• The tablet Da 1341 is a difficult case, since the visual evidence is very weak and even the experts note that their
degree of certainty is low.
• The tablet Db 5359 + 5565 +7214 is another difficult case as acknowledged by experts and their degree of certainty
is also low.
• The remnant in tablet KN Do 7740 largely matches the syllable ’ke’, suggested by the bibliography. The model in
this case probably failed to predict part of a human name; human names are typically unique.

The visual search of the missing symbol becomes more complicated due to the fact that the handwriting may differ
from the syllabary that we use as reference. It is important to note that the tablets in series D were written mostly by
one scribe and so the problem of dealing with different handwritings is limited, but still the scribe’s handwriting can
deviate from the reference.

Clearly our method provides a prior on sequence structure, while the visual appearance of the missing part gives
a visual observation. These are complementary sources of information which can be combined by experts to infill
the missing parts. Our model can serve as a tool for the expert helping him/her to choose from the various plausible
alternatives (e.g., from TOP-5).
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Fig. 6. The image of the damaged Mycenaean tablet KN Dl 933 + 968 + 975 on its left side (image copyright belongs to the Hellenic
Ministry of Culture and Sports - “Hellenic Organization of Cultural Resources Development”). Translation of the Mycenaean tablet
"*-*83-re-to (incomplete shepherd’s name): at si-ja-du-we (place name) belonging to po-ti-ni-ja-we-jo (Potniaweios), rams, wool, deficit
wool (’o’ is abbreviation of the Greek word ’ophelos’), deficit rams and deficit ki-rams".

Fig. 7. The image of the damaged Mycenaean tablet KN Dv 5236 + 5329 (copyright belongs to the Hellenic Ministry of Culture and
Sports - “Hellenic Organization of Cultural Resources Development”) and its proposed supplement from the bibliography [20] (left)
and from the BRNN model (right). Translation of the Mycenaean tablet "(unknown shepherd’s name): at ra-to (place name), rams".

Fig. 8. The image of the damaged Mycenaean tablet KN Db 5310 + 6062 + 8375 (copyright belongs to the Hellenic Ministry of Culture
and Sports - “Hellenic Organization of Cultural Resources Development”) and its proposed supplement from the bibliography [20]
(left) and from the BRNN model (right). Translation of the Mycenaean tablet "(damaged shepherd’s name e-*-jo): at ku-ta-to (Kutaiton,
place name), rams and ewes".
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Damaged
Tablets Sequences Bibliographic

annotation BRNN TOP-5

KN Dq 447 *-ta-wo da-mi-ni-jo OVIS:m oOVIS:m possibly ’ka’ or
’qe’

’ri’, ’ka’, ’u’, ’ti’,
’pi’

KNDl 933 + 968
+ 975 (Fig. 6)

*-*83-re-to si-ja-du-we po-ti-ni-ja-we-jo OVIS:f LANA oLANA
oOVISf okiOVIS:m perhaps ’ko’

’da’, ’e’, ’po’,
’ma’, ’ovis:m

KN Dp 1061 *-sa pa-i-ti-ja OVIS LANA probably ’to’
’to’, ’ka’, ’je’,
’qa’, ’*86’

KN Dv 1213 *-so u-ta-no OVIS:m ’to’, ’jo’ possible
’ko’, ’ta’, ’de’,
’pu’, ’wo’

KN Da 1341 [+]
1454 + 8777 *-no-qa-ta pa-i-to da-mi-ni-jo OVIS:m ’po’ possible, but

difficult
’wo’, ’jo’, ’ta’,
’ku’, ’o’

KN Db 1344 +
6017 + 7268 +
7950 + 8235

*-tu-to pa-i-to we-we-si-jo-jo OVIS:m OVIS:f perhaps ’ti’
’ti’, ’bl’, ’ke’, ’ra’,
’ka’

KN Da 1401 +
7998 + fr. *-wi da-*22-to OVIS:m perhaps ’na’

’ti’, ’ri’, ’to’, ’na’,
’*22’

KN Df 5198 +
5238 + 5269 wi-na-jo ra-* ki-ri-jo-te OVIS:m OVIS:f peOVIS:m traces favour

’ja’
’ja’, ’to’, ’bl’, ’jo’,
’ko’

KN Dv 5236 +
5329 (Fig. 7) *-jo ra-to OVIS:m perhaps ’qa’ or

’wo’
’ri’, ’*18’, ’ti’, ’te’,
’na’

KN Dv 5278 +
5338 + 8557 *-ma-we qa-mo OVIS:m ’ko’ not impossi-

ble
’ra’, ’ko’, ’ja’, ’ri’,
’*56’

KN Db 5310 +
6062 + 8375 (Fig.
8)

e-*-jo ku-ta-to OVIS:m OVIS:f perhaps ’qa’ or
’ri’

’ko’, ’ki’, ’da’,
’ka’, ’wi’

KN Db 5359 +
5565 + 7214 *-ma-na-so ra-su-to u-ta-jo OVIS:m OVIS:f ’pi’ not impossi-

ble
’bl’, ’ta’, ’ri’,
’mi’, ’su’

KN Dv 5690 du-ni-* ’jo’ possible
’ja’, ’bl’, ’wa’,
’ma’, ’u’

KN Dc 7161 +
7179 + 8365 + fr.
(Fig. 9)

*-to ku-ta-to u-ta-jo-jo OVIS:m oOVIS:m possibly ’ke’
’ra’, ’me’, ’ka’,
’a2’, ’a3’

KN Do 7740 *-ta ka-to-ro se-to-i-ja ’ke’ or ’de’
’ri’, ’ti’, ’si’, ’me’,
’nu’

Table 4. Bibliographic annotations [20] comparing to BRNN predictions in all sequences appear in the real cases.

7 CONCLUSIONS AND FUTUREWORK

We presented a generative neural language model for the most ancient proven stage of the Greek language, the
Mycenaean Greek language attributed by Linear B script. We collected a dataset of sequences extracted from partially
damaged Mycenaean documents in the related literature. We demonstrated that it is possible to train our language
model in order to infill the damaged parts of Mycenaean inscriptions. This is the first such effort to our best knowledge.

Our model exploits a symbol-level Bidirectional Recurrent Neural Network in order to capture the statistical structure
of the Mycenaean documents. We verified our method experimentally using synthetic and real data, we compared to
experts’ opinions and suggested possible explanations in cases of discrepancies between them. Our methodology is
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Fig. 9. The image of the damaged Mycenaean tablet KN Dc 7161 + 7179 + 8365 + fr. (copyright belongs to the Hellenic Ministry of
Culture and Sports - “Hellenic Organization of Cultural Resources Development”) and its proposed supplement from the bibliography
[20] (left) and from the BRNN model (right). Translation of the Mycenaean tablet "(unknown shepherd’s name): at ku-ta-to (Kutaiton,
place name) belonging to u-ta-jo (collector’s name), rams and deficit rams".

expected to assist the experts recover the missing parts by offering alternatives along with their probability, which are
complementary to the visual channel.

The key takeaways are:

• The rather limited amount of data does not allow us to make full use of state-of-the-art methods for language
modelling, however the classic RNN seem to be able to capture the context and provide results that are better
than 𝑛-gram models, which are often used in such applications.
• The data augmentation can help get better results. However, the augmentation step is not trivial at all. It requires
deep knowledge of the language and the domain and has to be done with caution in order to avoid contamination
of the dataset with misleading samples.
• The generative models like ours can provide alternatives for infilling the damaged parts, along with their
probabilities based solely on the structure of the documents discovered so far. Our model can be a complementary
tool for the experts, who as stated in the literature have based their estimates mainly on the visual appearance of
the missing parts. That appearance could be sometimes misleading or, in many cases, not available at all.

We hope that this work will help bring closer the machine learning, the linguistic and the archaeological communities
and will spark the interest of analyzing the Mycenaean Linear B and other ancient scripts, either deciphered or
undeciphered, using the appropriate sequential modeling tools.

In the future we will also seek for new ways to transfer the acquired knowledge from series D to the other Linear
B series and vice versa. We will investigate new data augmentation rules that seem necessary in tasks that have to
manage a small amount of data. Finally the visual channel could be considered, i.e., the partially visible symbols, could
help define constraints to scale down the feasible solution space.
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Appendix: Model output for damaged tablets of series D

Table 5. BRNN predictions in the remaining 127 real cases.

Damaged Tablets Sequences BRNN TOP-5

KN Dq 42 *-jo ma-sa pe-ri-qo-ta-o OVIS:m ’ri’, ’ni’, ’te’, ’ti’, ’si’

KN Dp 43 *-ta-re-wo OVIS:m LANA ’u’, ’ku’, ’we’, ’lana’, ’me’

KN Dq 45 *-mo e-ra a-no-qo-ta-o OVIS:m ’so’, ’ri’, ’je’, ’ni’, ’te’

KN Dl 412 *-da ka-ru-no sa-qa-re-jo OVIS:f okiOVIS:m ’si’, ’u’, ’to’, ’pe’, ’pi’

KN Dq 438 *-to-i-ja ka-to-ro se-to-i-ja OVIS:m ’ki’, ’se’, ’ke’, ’da’, ’po’

KN Dq 440 *-ka-mo a-no-qo-ta e-ra OVIS:m oOVIS:m ’ku’, ’a’, ’ta’, ’po’, ’pa’

KN Dq 441 *-qo-si-jo o-re-te-wo da-*22-to ’ra’, ’ri’, ’ta’, ’ku’, ’we’

KN Dq 448 *-ni-to u-ta-no ’mi’, ’ti’, ’du’, ’pa’, ’bl’

KN Dk 920 + 7294 + 7330 *-ni-ja-so da-*22-to ko-ma-we-to OVIS:m LANA
oLANA

’ta’, ’*82’, ’tu’, ’mi’, ’du’

KN Dl 928 *-*56-na-ro da-wo ra-wo-qo-no-jo OVIS:f kiOVIS ’wi’, ’jo’, ’ru’, ’wa’, ’ra’

KN Dk 931 + 7293 *-da sa-jo ko-ma-we-to OVIS:m LANA ’i’, ’*22’, ’te’, ’de’, ’ra’

KN Dl 934 + 7082 *-ja e-ko-so OVIS:f oOVIS:f WE kiOVIS:m okiOVIS:m ’ni’, ’ti’, ’pa’, ’te’, ’ra’

KN Dl 935 + 942 *-nu-ka da-ta-ra-mo sa-qa-re-jo OVIS:f LANA oLANA
oOVIS:f okiOVIS:m

’du’, ’ni’, ’da’, ’ti’, ’ki’

KN Dl 938 *-re-jo OVIS:f kiOVIS:m LANA okiOVIS:m oLANA ’pa’, ’a’, ’qa’, ’mi’, ’mo’

KN Dl 940 + 8779 *-so e-ra sa-qa-re-jo OVIS:f LANA okiOVIS:m LANA ’de’, ’pu’, ’*22’, ’je’, ’nwa’

KN Dk 969 *-ki-to a-ko-ra si-ja-du-we ’ru’, ’bl’, ’ra’, ’ko’, ’ni’

KN D 1024 + 7130 *-ra-jo ma-ti-jo OVIS ’u’, ’wa’, ’e’, ’qa’, ’we’

KN Dk 1066 *-te-u ku-ta-to kineOVIS:m LANA ’ke’, ’ka’, ’qo’, ’ko’, ’te’

KN Dk 1068 *-*49-so ku-ta-to OVIS:m LANA oLANA ’ri’, ’ta’, ’mi’, ’pu’, ’lana’

KN Dk 1070 *-za-ra-ro ku-ta-to OVIS:m LANA oLANA ’i’, ’za’, ’ma’, ’de’, ’mi’

KN Db 1086 *-ro da-*83-ja a-ka-ta-jo OVIS:m OVIS:f ’ko’, ’to’, ’ru’, ’za’, ’pu’

KN Da 1087 *-jo a-ka OVIS:m ’ri’, ’te’, ’wi’, ’ti’, ’ni’

KN Da 1091 + 1413 *-ri-sa-ta ri-jo-no OVIS:m ’ti’, ’pe’, ’nu’, ’qe’, ’te’

KN Da 1091 + 1413 (verso) su-ki-ri-ta *-nu-ra-qa ’ovis:m’, ’e’, ’ovis:f’, ’neovis:m’, ’saovis’

KN Da 1091 + 1413 (verso) na-u-ti ka-ta-do-qe * ’ovis:f’, ’peovis:m’, ’ovis’, ’ovis:m’, ’se’

KN De 1109 *-te-to ku-ta-to u-ta-jo OVIS:m OVIS:f oOVIS:m ’wo’, ’ta’, ’ka’, ’re’, ’ke’

KN Dv 1124 *-ta ku-ta-to OVIS:m ’pe’, ’we’, ’u’, ’lana’, ’a3’

KN Db 1126 + 5303 + 7208 *-no-ta-na ku-ta-to OVIS:m OVIS:f ’jo’, ’o’, ’ja’, ’i’, ’wi’

KN De 1141 *-ra u-ta-jo-jo OVIS:m OVIS:f oOVIS:m ’e’, ’qa’, ’da’, ’we’, ’wi’

KN Dv 1142 *-jo-ko e-ko-so u-ta-jo-jo OVIS:m ’ri’, ’di’, ’ki’, ’ti’, ’ra’

KN Dv 1145 *-so da-wo u-ta-jo-jo OVIS:m OVIS:f ’pu’, ’de’, ’ko’, ’ta’, ’ru’

KN Dv 1146 + 1498 *-mo-ni-ja-ro da-wo u-ta-jo-jo OVIS:m OVIS:f ’bl’, ’qa’, ’so’, ’ru’, ’no’

Continued on next page
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Table 5. (Continued)BRNN predictions in the remaining 121 real cases.

Damaged Tablets Sequences BRNN TOP-5

KN Dc 1148 *-ma-ro da-*22-to OVIS:m peOVIS:m ’ri’, ’te’, ’ke’, ’ti’, ’ta’

KN Db 1165 + 7110 + 7226 *-ra-ko da-ra-ko we-we-si-jo OVIS:m OVIS:f ’di’, ’mi’, ’da’, ’we’, ’pu’

KN Df 1187 + 7191 *-ri-jo ra-to OVIS:m OVIS:f peOVIS:m ’au’, ’ti’, ’ki’, ’mi’, ’we’

KN Dd 1193 + 5370 *-du-ro ra-to OVIS:m OVIS:f paOVIS:m ’a’, ’te’, ’ke’, ’ti’, ’ri’

KN Da 1194 *-de-u ra-su-to ki-ri-jo-te OVIS:m ’ke’, ’te’, ’ta’, ’ti’, ’ra’

KN Db 1196 + 8233 *-pa-u-ro ra-su-to OVIS:m OVIS:f ’ke’, ’ma’, ’te’, ’de’, ’zo’

KN Db 1208 + 5488 *-ra-so ri-jo-no OVIS:m OVIS:f ’e’, ’qa’, ’wa’, ’o’, ’du’

KN Db 1211 + 5389 *-ru-ka-*18 ri-jo-no OVIS:m OVIS:f ’de’, ’ko’, ’ma’, ’*18’, ’bl’

KN Dh 1243 *-e-to tu-ri-so kiOVIS:m ’ra’, ’bl’, ’ke’, ’re’, ’se

KN Da 1273 + 1440 [+] 8788 *-ne-u e-ko-so OVIS:m ’te’, ’ra’, ’ta’, ’i’, ’ke’

KN Dv 1309 *-wo-no do-ti-ja a-te-jo ’ta’, ’ka’, ’ri’, ’ti’, ’di

KN Dg 1318 *-ta-ro qa-mo OVIS:m paOVIS:m oOVIS:m ’ri’, ’pe’, ’ka’, ’lana’, ’ti’

KN Dv 1328 + frr. *-*49-so ku-ta-to OVIS:m OVIS:m ’ta’, ’ri’, ’mi’, ’pu’, ’ka’

KN Dv 1334 + 5324 + 8393 + frr. *-ja pe-ri-qo-te-jo ki-ri-jo-te OVIS:m ’ni’, ’ra’, ’ti’, ’we’, ’i’

KN Db 1340 + 5263 + fr. *-ra-ro su-ri-mo OVIS:m OVIS:f ’da’, ’qa’, ’ta’, ’we’, ’pu2’

KN Dd 1342 pa-i-to *-ra-to-jo OVIS:f OVIS:m paOVIS:m ’we’, ’qa’, ’pa’, ’ma’, ’se’

KN Da 1352 + 5634 + frr. *-ti-jo pa-i-to u-ta-jo-jo OVIS:m ’wo’, ’do’, ’za’, ’mi’, ’pa’

KN Dd 1366 + 5360 *-na da-wo OVIS:m OVIS:f paOVIS:m ’ru’, ’ka’, ’u’, ’ro’, ’o’

KN Dq 1377 + frr. pa-*-na ti-ri-to OVIS:m ’i’, ’o’, ’e’, ’wi’, ’pu’

KN Da 1382 + 1482 *-mi-ni-to ri-jo-no u-ta-jo OVIS:m ’ti’, ’i’, ’pi’, ’te’, ’a3’

KN De 1383 + 5679 *-ro ku-ta-to u-ta-jo-jo OVIS:m OVIS:f oOVIS:m ’qi’, ’qa’, ’wi’, ’mi’, ’za’

KN Dv 1386 + 8575 ti-ri-to qa-* a-te-jo ’ra’, ’mo’, ’sa’, ’no’, ’okiovis’

KN Dk 1399 *-se-u da-mi-ni-jo OVIS:m ’te’, ’ke’, ’ti’, ’ri’, ’ka’

KN Dv 1411 *-ri-ja-ta ’ti’, ’*56’, ’au’, ’pe’, ’ki’

KN Dv 1422 *56-ro2 su-* OVIS:m ’ri’, ’to’, ’ma’, ’ja’, ’ka’

KN Dd 1429 + 5264 + 5327 *-za-ra-ro pa-i-to u-ta-jo OVIS:m OVIS:f paOVIS:m ’wo’, ’za’, ’mi’, ’ra’, ’ta’

KN Dv 1430 + 7200 + 8410 + fr. *-do-ro da-ra-ko we-we-si-jo OVIS:m OVIS:f OVIS:m ’ku’, ’ti’, ’te’, ’da’, ’ta’

KN Dv 1501 di-*79-nu-* ’u’, ’me’, ’ne’, ’da’, ’ra’

KN Dv 1504 + fr. di-de-ro e-* OVIS:m OVIS:f ’ra’, ’ko’, ’mo’, ’ja’, ’me’

KN Dv 1506 di-za-* ’nu’, ’ti’, ’na’, ’da’, ’si’

KN Dd 1579 + 1586 + fr. *-ti da-ra-ko we-we-si-jo OVIS:m OVIS:f paOVIS:m ’za’, ’mi’, ’pu’, ’*22’, ’do’

KN Dv 1607 + 5978 + 7276 + fr. *-ti-ro pa-i-to we-we-si-jo OVIS:m OVIS:f ’do’, ’ti’, ’za’, ’ri’, ’mi’

KN D 1650 *-pa da-wo ra-wo-qo-no-jo OVIS:m ’ra’, ’pe’, ’we’, ’u’, ’ta’

KN Da 2005 + 5366 *-ro a-ka OVIS:m ’pe’, ’po’, ’ra2’, ’za’, ’te’

KN Db 2020 + 5314 [+] 5423 *-ru-wo-i-ko su-ri-mo OVIS:m OVIS:f ’te’, ’bl’, ’na’, ’po’, ’za’

Continued on next page
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Table 5. (Continued)BRNN predictions in the remaining 121 real cases.

Damaged Tablets Sequences BRNN TOP-5

KN Da 2027 + fr. *-*22 ku-ta-to OVIS:m ’da’, ’za’, ’olana’, ’wo’, ’wi’

KN Db 5041 + 8382 + fr. *-ni tu-ni-ja OVIS:m OVIS:f ’me’, ’ti’, ’*86’, ’mo’, ’du’

KN Dv 5075 *-mo pa-i-to we-we-si-jo OVIS:m oOVIS:m ’te’, ’ri’, ’je’, ’so’, ’nu’

KN Dd 5174 + 5215 *-da-na-ro pa-i-to OVIS:m OVIS:f paOVIS:m ’bl’, ’wi’, ’jo’, ’*82’, ’de’

KN Da 5179 + 5674 + 7257 +
8556 + 8611

*-ti-ko-ro ku-ta-to OVIS:m ’*22’, ’za’, ’wo’, ’do’, ’i’

KN Dc 5190 + 7157 + 8194 *-de-a-ta *56-ko-we OVIS:m peOVIS:m ’ta’, ’wo’, ’me’, ’ne’, ’we’

KN Da 5209 + 5248 *-jo pu-so OVIS:m ’te’, ’we’, ’ti’, ’pi’, ’ni’

KN Da 5220 + 5330 + 5355 *-ro ku-ta-to OVIS:m ’qi’, ’qa’, ’wi’, ’mi’, ’za’

KN Dv 5224 + fr. *-a-pa-ni-jo OVIS:m ’bl’, ’ti’, ’to’, ’ki’, ’zaovis:m’

KN Da 5245 + 5299 *-ro e-ko-so ki-ri-jo-te OVIS:m ’da’, ’to’, ’ze’, ’je’, ’ti’

KN Db 5272 [+] 5294 ru-ta2 ra-* ki-ri-jo-te OVIS:m OVIS:f ’ja’, ’to’, ’wi’, ’jo’, ’po’

KN Df 5275 + 5581 + 7078 *-ti ri-jo-no OVIS:m OVIS:f peOVIS:m ’za’, ’e’, ’qe’, ’a2’, ’mu’

KN Dn 5286 + 5362 *-ka-ta OVIS:m ’ku’, ’a’, ’po’, ’da’, ’du’

KN Dv 5291 + 5588 *-ri-ro su-ri-mo OVIS:m ’ti’, ’*56’, ’ki’, ’pe’, ’di’

KN Dv 5297 *-ti-jo qa-mo OVIS:m ’wo’, ’do’, ’za’, ’ko’, ’mi’

KN Da 5308 + 5332 + 7694 si-*-te-u ku-ta-to OVIS:m ’ka’, ’ta’, ’o’, ’ke’, ’da’

KN Dv 5312 [+] 6057 [+] 8789 wo-jo-* e-ko-so OVIS:m ’jo’, ’no’, ’re’, ’ro’, ’qo’

KN Dv 5328 + 5376 *-ro ku-ta-to OVIS:m ’qi’, ’qa’, ’wi’, ’mi’, ’za’

KN De 5335 + 9660 + frr. *-ri ku-ta-to oOVIS:m ’du’, ’ti’, ’au’, ’za’, ’pe’

KN Dv 5346 ta-pa-* ’i’, ’bl’, ’re’, ’si’, ’ja’

KN Dv 5349 *-nwa pu-so ’we’, ’qo’, ’*86’, ’ka’, ’da’

KN Dv 5398 + 7207 + 8749 + fr. *-no ku-ta-to OVIS:m OVIS:f ’ko’, ’wi’, ’mo’, ’da’, ’qi’

KN Df 5406 + 8371 *-jo-ro ra-su-to OVIS:m OVIS:f peOVIS:m ’ri’, ’ti’, ’ni’, ’*18’, ’te’

KN Da 5576 + 7160 *-ki-so e-ra u-ta-jo-jo OVIS:m ’pu’, ’ri’, ’ru’, ’su’, ’mi’

KN Dn 5668 + fr. *-qo-te-jo OVIS:m ’ri’, ’*18’, ’wo’, ’ra’, ’ku’

KN Dd 5704 + 7180 + frr. ri-pa-* ra-ja OVIS:m OVIS:f paOVIS:m ’ko’, ’re’, ’e’, ’ja’, ’wo’

KN Db 5715 + 7274 + 7942 +
8374 + fr.

*-ti-jo da-*22-to OVIS:m OVIS:f ’wo’, ’do’, ’za’, ’ri’, ’ko’

KN Dv 5843 + 8405 *-ti da-wo OVIS:m OVIS:f ’qe’, ’za’, ’ru’, ’i’, ’do’

KN D 5954 *-ke-mo saOVIS:m ’su’, ’de’, ’ovis:m’, ’we’, ’a3’

KN Dv 6018 + 8358 + fr. ke-*-na-ro tu-ni-ja ’u’, ’wa’, ’da’, ’du’, ’pu’

KN Dv 6045 pu-ma-* ’da’, ’so’, ’me’, ’di’, ’ma’

KN Dl 7071 *-no ri-jo-no OVIS:f LANA oOVIS:f oLANA ’wo’, ’i’, ’wi’, ’ku’, ’ka’

KN Da 7080 *-ro *56-ko-we OVIS:m ’wi’, ’da’, ’to’, ’pe’, ’mu’

KN Da 7081 *-ja ki-ri-jo-te OVIS:m ’ni’, ’ra’, ’olana’, ’*22’, ’me’
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Table 5. (Continued)BRNN predictions in the remaining 121 real cases.

Damaged Tablets Sequences BRNN TOP-5

KN Do 7087 *-ro se-to-i-ja OVIS:f kiOVIS ’to’, ’ko’, ’su’, ’pe’, ’po’

KN Db 7118 + 7229 + 7881 + fr. *-ma qa-na-no-to OVIS:m OVIS:f ’e’, ’i’, ’ra’, ’me’, ’du’

KN Dl 7125 *-to ri-jo-no OVIS:f oOVIS:f ’ne’, ’ra’, ’a3’, ’a2’, ’ke’

KN Dq 7126 pa-i-to *-ko-ta-o OVIS:m ’a’, ’u’, ’ovis:m’, ’kiovis:m’, ’wi’

KN Dv 7140 *-wo e-ra OVIS:m paOVIS:m ’da’, ’je’, ’wo’, ’te’, ’de’

KNDl 7141 + 7264 + 7971 + 7984 *-ti-za *56-ko-we-e sa-qa-re-jo okiOVIS:m ’mi’, ’oovis:f’, ’qe’, ’pu’, ’do’

KN D 7334 *-ni-to e-ra a-no-qo-ta ’ti’, ’mi’, ’pa’, ’du’, ’ma’

KN D 7386 *-ro u-ka OVIS:m ’ko’, ’to’, ’ru’, ’ta’, ’de’

KN Dl 7771 *-qo-ta ra-ja po-ti-ni-ja-we-jo ’ri’, ’mo’, ’no’, ’i’, ’ni’

KN D 7773 *-ta-ra-pi OVIS:m ’du’, ’u’, ’mi’, ’ri’, ’ku’

KN Dl 7875 + 9714 + 9862 *-ku-mi-ro ra-ja ’jo’, ’o’, ’e’, ’ta’, ’bl’

KN Dl 7905 + 9328 + 9332 + fr. *-ra-ri-jo si-ja-du-we po-ti-ni-ja-we-jo ’bl’, ’we’, ’da’, ’ta’, ’u’

KN Dv 8193 *-su-ti-jo a-ka ’ra’, ’ri’, ’bl’, ’ko’, ’ma’

KN Da 8228 + fr. *-nwa-jo da-wo u-ta-jo-jo OVIS:m ’we’, ’ta’, ’mi’, ’me’, ’*82’

KN Dv 8280 + 8710 + 9584 +
9656 + frr.

qa-mi-ki-* ’to’, ’u’, ’da’, ’ti’, ’si’

KN Da 8355 + fr. *-ki-si-wo ra-su-to OVIS:m ’di’, ’ta’, ’we’, ’da’, ’pe’

KN Db 8360 + fr. *-zo ra-su-to OVIS:m OVIS:f ’te’, ’je’, ’e’, ’me’, ’to’

KN Dv 8361 + fr. *-to da-wo OVIS:m OVIS:f ’ka’, ’ne’, ’te’, ’i’, ’ra’

KN Dv 8366 *-*56-wo su-ri-mo ’ru’, ’ri’, ’seovis:f’, ’qa’, ’bl’

KN Db 8383 + 8415 + 8426 +
8547

*-ko-so ra-to OVIS:m OVIS:f ’e’, ’ri’, ’u’, ’pu’, ’a’

KN Dv 8634 *-za-ra-ro ’ke’, ’mi’, ’ru’, ’ta’, ’i’

KN Dv 8652 + frr. a-ru-* da-*22-to OVIS:m oOVIS:m ’*56’, ’ro’, ’je’, ’sa’, ’so’

KN Dl 9016 + 9428 + frr. *-di-de-ro tu-ni-ja OVIS:f kiOVIS LANA kiOVIS ’ma’, ’bl’, ’wi’, ’ta’, ’ke’

KN D 9290 *-to-wi-jo OVIS:m ’ra’, ’wo’, ’ri’, ’we’, ’za’

KN Dl 9841 *-qo-no-jo OVIS:f kiOVIS:m ’ri’, ’sa’, ’ra’, ’ku’, ’*18’
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