
A Quantum 3D Convolutional Neural
Network with Application in Video

Classification

Kostas Blekos(B) and Dimitrios Kosmopoulos

University of Patras, University Campus, 26504 Rion, Achaia, Greece
mplekos@physics.upatras.gr, dkosmo@upatras.gr

Abstract. Quantum computing seeks to exploit the properties of quan-
tum mechanics to perform computations at a fraction of the cost com-
pared to the classical computing methods. Recently, quantum methods
for machine learning have attracted the interest of researchers. Those
methods aim to exploit, in the context of machine learning, the poten-
tial benefits that the quantum computers should be able to offer in the
near future. A particularly interesting area of research in this direction,
investigates the union of quantum machine learning models with Con-
volutional Neural Networks. In this paper we develop a quantum coun-
terpart of a 3D Convolutional Neural Network for video classification,
dubbed Q3D-CNN. This is the first approach for quantum video classi-
fication we are aware of.

Our model is based on previously proposed quantum machine learn-
ing models, where manipulation of the input data is performed in such a
way that a fully quantum-mechanical neural network layer can be realized
and used to form a Quantum Convolutional Neural Network. We aug-
ment this approach by introducing quantum-friendly operations during
data-loading and appropriately manipulating the quantum network. We
demonstrate the applicability of the proposed Q3D-CNN in video clas-
sification using videos from a publicly available dataset. We successfully
classify the test dataset using two and three classes using the quantum
network and its classical counterpart.

1 Introduction

Quantum computing (QC) is using the as-yet-untapped quantum mechanical
properties of nature, such as superposition and entanglement, to provide a new
toolbox for computational problems. Such a toolbox is expected to provide great
theoretical and technological advancements in the near future. A large num-
ber of algorithms have been proposed lately and are being investigated, while
researchers are still trying to understand the advantages that a quantum com-
puter has to offer.

Image processing algorithms are an important subset of algorithms where
quantum computing is developing rapidly. Recently, in the context of image pro-
cessing and computer vision research in general, there have been many interest-
ing proposals for quantum processing techniques which employ fully-quantum,
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quantum-classical hybrids or quantum-inspired models [8,10–12,19,32]. On the
other hand, to our best knowledge, the closely related subfield of video pro-
cessing has not employed QC yet. During the last decade the deep learning
methods have revolutionized the field of video classification using CNNs (see,
e.g., [6,14,26,30]) or RNNs (e.g., [27,29,31]). The research question we tackle
in this paper is how to exploit the benefits of QC using a CNN architecture for
video classification. This is a very challenging task but there are already many
directions that are being investigated [1,3,5,9,11,13,16,20–22]. A particularly
interesting line of investigation is to directly translate neural network layers to
quantum devices exploiting the better-understood methods of the classical ML
algorithms [2,4,15,23,24,28].

To the best of our knowledge, there has been no work for video processing
using quantum machine learning techniques. Here we propose an experimental
setup and we investigate the quantum video processing prospects. Thus we test
the applicability of a quantum 3D-CNN (dubbed Q3D-CNN) for video classifi-
cation.

Our main contributions are:

– A quantum machine learning procedure for video classification;
– A comparison of the proposed Q3D-CNN to the classical 3D-CNN with the

same structure, and
– An investigation of the scaling properties of the quantum algorithm, thus

highlighting the differences in efficiency to known classical algorithms

2 Related Work

Many models have been proposed lately for the extension or enhancement of
Neural Networks using quantum computing techniques [13]. Few of the pro-
posed models for quantum neural networks aim to function in a way similar to
convolutional neural networks so that they can be useful in computer vision.
A non-exhaustive list of these relevant quantum neural network architectures
include Quanvolutional Neural Networks [11], Quantum Convolutional Neural
Networks [7], Quantum M-P Neural Networks [34], Quantum Competitive Neu-
ral Network [33] and more. Variational Circuits represent a very important class
of hybrid quantum-classical algorithms [5] that also implements neural networks.
A Variational Neural Network (eg [17,25]) is a parametrized quantum circuit,
with the parameters been fed to a classical machine learning algorithm.

In [7] Cong et al. proposed a new quantum circuit model dubbed “Quantum
Convolutional Neural Network” that could be used in signal processing. Their
proposed quantum circuit model shares aspects with a classical CNN but can
not reproduce in general the operations of a classical CNN and, therefore, can
not be used to “translate” abstract classical CNN architectures to quantum.

At the same time, a more general approach was proposed by Kerenidis et
al. [15]. Using the observation that an inner product estimation could replace
the matrix convolution process of a CNN, they proposed a “hardware agnostic”
method to construct a quantum CNN layer that can be used to build quantum
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counterparts of any classical CNN architecture. This model is presented in detail
in the next section. Our Q3D-CNN builds on top of this model so that it can be
used for video classification.

3 Methodology

The main goal of this work is to build a quantum 3D-CNN, in such a way that
(a) it can successfully discriminate different classes of video input data and (b)
it can do so in a more efficient way than the equivalent classical CNN. To this
end we first employ quantum-efficient replacements for the classical components
of the 3D-CNN as proposed in [15]. Then, we add a quantum process with no
efficient classical analog that further boosts the efficiency of the QCNN.

3.1 Quantum Background

The whole point of “translating” a classical process to quantum is to try and
take advantage of efficiency boosts that are offered by some quantum processes.
Before describing these boosts and the way we use them, we will first briefly
describe what it means to have a quantum version of a classical algorithm.

In a quantum computing process instead of using bits of 0 and 1 to store
information we use quantum states of two levels (a qubit). These quantum states
are 2D vectors of complex parameters and measure 1. A series of n quantum
bits (often referred to as a quantum register) form a 2n-dimensional vector of
complex parameters and measure 1. The computational basis, then, is the one-hot
orthonormal basis: |0〉 =

(
1, 0, . . . , 0

)T
, |1〉 =

(
0, 1, . . . , 0

)T
, |2〉 = . . . . . .

The quantum states are manipulated by use of quantum gates which act
as the quantum analog of the classical logical gates (AND, OR, NOT, etc.);
they are represented by complex unitary matrices. By acting the quantum gates
on the quantum states, we can rebuild the classical logical circuits. The key
differences of the quantum-vs-classical can be derived from this vector-matrices
representation and can be summarized as follows:

– We can form and then exploit interference patterns when combining complex
vectors in order to get to a result more efficiently than what is classically
possible. This inference-pattern-exploitation is what is sometimes referred to
as “taking advantage of quantum parallelism”.

– Applying unitary matrices on complex vectors is a linear and reversible pro-
cess, therefore quantum computing is linear and reversible in nature; this
forced linearity is a serious obstacle in implementing the many nonlinear pro-
cesses of neural networks.

– A direct consequence of the previous point is that a quantum register (a
series of quantum bits) can not be copied. This is a point that should be
emphasized: there can be no physical way of copying a qubit. The exact
complex parameters of a qubit are unknowable. Therefore, to extract the
information from a quantum register one has to repeat the quantum algorithm
while sampling the output.
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When simulating a quantum computer, the output quantum state vector is obvi-
ously known. However, since the actual state is unknowable, when using a real
quantum computer we can only approximate the output quantum state vector
to an arbitrary degree by repeating the quantum process many times and keep-
ing track of the distribution of the outcomes. This process is called tomography
and has to be taken into consideration by inserting “noise” parameters into the
simulation [15].

Another important issue is the conversion between classical and quantum
data. Since the algorithms that we are concerned with deal with both classical
and quantum procedures, a way to translate between classical and quantum data
is needed. For example, the input image is initially stored in a classical computer
but needs to be converted to a quantum state so that can be manipulated by
the quantum CPU. A usual practice, and the one that we use in this paper,
is to encode a classical vector by mapping its elements to the corresponding
amplitudes of the basis vectors. So, if v =

(
v0, v1, . . . , vn

)
:

|v〉 =
1

‖v‖
∑

vi |i〉

Using this encoding, one can devise classical data structures (a “quantum RAM”
(QRAM)) that provide efficient implementations for the crucial quantum state
storing and retrieving procedures.

3.2 Quantum Convolutional Neural Network

We now turn to the implementation of the Q3D-CNN. The crucial parts of a
classical CNN are the input matrices, the kernels, the convolution between them
and the nonlinear activation function. Ideally, we would have an at-least-as-
efficient quantum counterpart for each of these parts. We construct a quantum
CNN based on the procedure in [15]. Our key differences are a) we are applying
the algorithm to 3D volumes of videos instead of greyscale images and, most
importantly, b) we introduce a quantum-efficient preprocessing step based on
the observation that video classification heavily depends on differences between
successive frames. This is a crucial step that significantly boosts the efficiency
of the network as we will show.

The key observation in [15] is that the matrix convolution can be replaced
by the quantum-efficient inner product estimation algorithm. The inner product
estimation algorithm estimates inner products between two quantum vectors
with high probability and high efficiency. To use the algorithm, the image and
kernel matrices have first to be unraveled so as regions where matrix multiplica-
tion was to be applied, are now rows and columns where inner product operation
will be applied. More specifically, a region w×h of the input image is converted
to a quantum vector |A〉 and the corresponding w × h kernel is converted to a
quantum vector |F 〉. The inner product 〈A|F 〉 is then estimated using the effi-
cient quantum routine (Fig. 1). If the matrices are stored in a QRAM, the rows
and columns can be directly efficiently extracted.
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Fig. 1. Converting matrix convolution to inner product operation.

The difference between successive frames can be calculated quantum-
efficiently for vectors that are stored in a QRAM at the expense of using one
more qubit (an ancilla qubit). For two successive frames f0, f1 we can form the
following quantum stating using only two QRAM queries

|f0〉 |0〉a + |f1〉 |1〉a
Then, by applying only one quantum operation on the ancilla qubit and mea-
suring until we find the ancilla qubit in state |1〉a we are left with the state
|f0〉 − |f1〉 which represents the difference between two successive frames.

To form all difference frames, we can either store the new state as the input
frame and repeat the process for the rest of the frames, or, if the number of
qubits is a cheaper resource, we can form all difference-frames with just one pass
by using one ancilla qubit for each new frame (Fig. 2).

Fig. 2. Process of calculating and storing the difference frames

The full algorithm, for a single layer, works as follows (see Algorithm 1; step
numbers referred in Fig. 3):

1 Store into QRAM: the classical matrices that represent the input image layers
and the kernels are stored in an efficient QRAM structure.

1A “3D” preprocess: Perform the difference operation and update the QRAM.
2 Unravel: from the QRAM we can efficiently extract quantum states that rep-

resent regions of the input image layers as rows and the kernels as columns.
3 Inner Product Estimation: Using the inner product estimation algorithm we

construct a state that is proportional to the inner product of the rows and
columns of the previous step. This represents the convolution of the initial
input images and kernels.
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4 Activation function and QRAM update: A final step applies a classical non-
linear activation function to the inner product while updating the QRAM by
sampling the output of the previous step.

The next layer of a QCNN loops back from step 2 as many times as there are
layers to the CNN.

Algorithm 1. Q3D-CNN layers
QRAM ← (video, kernels)
Perform difference operation → QRAM
repeat

Unravel and perform Inner Product Estimation
Perform the classical operations while updating the QRAM

until no more layers

4 Experimental Evaluation

We now describe an implementation of the Q3D-CNN that showcases the net-
work performance and the accuracy advantage that the difference-operation pro-
vides. In the following we describe the dataset, the network architectures and
report the respective classification results.

Dataset and Pre-processing. We evaluate our Q3D-CNN using a small sub-
set of the publicly available 20BN-jester Dataset V1, containing labeled video
clips showing humans performing predefined hand gestures [18]. The full dataset
contains about 150000 video samples split in 27 classes. Each video has a height
of 100 pixels and variable width of the same order. The average duration of each
video sample is around 36 frames at 12 fps. To be able to perform the training
simulations at a reasonable time we used only a small part of the dataset and we
reduced those videos both in dimensions and duration. We cropped and down-
scaled each image keeping only the Red channel (see Table 1). The rationale for
keeping the Red channel—instead of the more commonly kept Green channel—is
that the skin is usually brightest on the Red channel making it more appropriate
for our target application.

We perform experiments with two and three of the available classes for train-
ing. Preliminary runs have shown that the method scales well for more classes
in terms of accuracy but greatly increases the simulation times so we opted for
the smaller classes as proof-of-concept work.

Network Architecture. We trained four different networks for two versions
of the dataset as shown in Table 2. For each dataset, comprised by two or three
classes, we run the classical and quantum CNN with or without the 3D pre-
processing step. Different input sizes where tried with similar results. We only
present here the smaller (32 × 32)-sized datasets, as these better highlight the
accuracy advantage given by the 3D step.
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Fig. 3. Graphical summary of a quantum convolutional layer [15]

The network architecture, common among all instances, was kept as simple
as possible so as the results can be as comparable as possible though, as already
noted, a truly direct comparison cannot be made. We used two convolutional
layers with 8×8 kernels followed by two fully connected layers and one output
layer. The activation function is a capped ReLu [15] with a cap at 10.

Training. Both the classical and quantum networks were trained for 200 epochs
using a simple backpropagation algorithm with learning rate of 0.01. We use the
quantum version of the backpropagation algorithm as described by [15].

Simulation and simulation parameters. Since there are as yet no real quan-
tum computer implementations, the quantum processes have to be simulated
on a classical computer. The simulation requires sampling of the output of the
quantum processes as described in Sect. 3.1. This greatly affects the accuracy of
the network and execution speed. It is obvious that until there is a real quantum
computing device to run the quantum algorithms on, the evaluation of the algo-
rithms is incomplete at best. For a more complete discussion of the simulation
parameters we refer the reader to [15].
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Table 1. The reduced 20BN-Jester dataset.

Label Videos Image size Frames

Swipe Left 250 32 × 32 16

Swipe Right 250 32 × 32 16

Turning Hand Clockwise 250 32 × 32 16

Fig. 4. Sample frames for the classes of “Swipe Left” (top row), “Turning Hand CLock-
wise” (middle row) and “Swipe Down” (bottom row).

Results. We evaluate the performance of the Q3D-CNN in terms of prediction
accuracy and run-time efficiency. Since we can not directly compare training
efficient and run-times— as quantum devices for tasks like this don’t yet exist—
we report the calculated complexity of the networks. We compare each of the four
networks’ performance (CNN, 3D-CNN, QCNN and Q3D-CNN) for each dataset
(2 & 3 classes) (Table 2). The corresponding confusion matrices are shown in
Table 3.

We see that the best accuracy was achieved by the 3D-CNN at 87% for 2
classes and 72% for three classes. The accuracies for the Q3D-CNN where very
similar to the classical with 83% and 67% respectively. The non-3D versions
of both networks achieved, as was expected, significantly lower accuracy val-
ues, validating the use of the “3D” post-processing for improving the network’s
performance.

In terms of network complexity, we highlight the difference in efficiency
between the classical and quantum “3D” post-processing operation. We notate
ÕC and ÕQ the base classical and quantum network complexities respectively. In
general, ÕC depends on the kernel and input image sizes quadratically, while ÕQ

depends on the kernel and input image sizes almost linearly. For a more detailed
analysis of ÕQ see [15]. The “3D” operation, on the other hand, has a complexity
of O(size) for the classical case but a complexity of O(1) for the quantum case,
as the depth of the quantum circuit needed to perform the operation is constant.
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Table 2. Comparison of accuracy and one-layer-complexity for the various classical
and quantum networks.

Network Classes Accuracy Complexity

CNN 2 0.69 ÕC

3 0.49

QCNN 2 0.73 ÕQ

3 0.58

3D-simulated CNN 2 0.87 O(size) + ÕC

3 0.72

Q3D-CNN 2 0.83 O(1) + ÕQ

3 0.67

Table 3. Confusion matrices for 2- and 3-class datasets and all networks. A = “Swiping
Left”, B = “Swiping Down”, C = “Turning Hand Clockwise”

CNN Predicted

A C

True A 0.30 0.16

True C 0.15 0.39

CNN Predicted

A B C

True A 0.10 0.06 0.15

True B 0.00 0.17 0.15

True C 0.04 0.11 0.22

QCNN Predicted

A C

True A 0.25 0.23

True C 0.04 0.48

QCNN Predicted

A B C

True A 0.17 0.08 0.07

True B 0.02 0.22 0.11

True C 0.07 0.08 0.19

3D-CNN Predicted

A C

True A 0.43 0.06

True C 0.06 0.44

3D-CNN Predicted

A B C

True A 0.23 0.03 0.03

True B 0.02 0.22 0.09

True C 0.03 0.08 0.27

Q3D-CNN Predicted

A C

True A 0.38 0.11

True C 0.06 0.45

Q3D-CNN Predicted

A B C

True A 0.20 0.05 0.04

True B 0.03 0.21 0.10

True C 0.03 0.08 0.26
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5 Discussion and Conclusion

We presented a convolutional neural network architecture built using quantum
processes that is able to discriminate between different classes of videos with
comparable accuracy to the classical counterpart but with higher efficiency. This
is the first approach for quantum video classification we are aware of. It is based
on quantum-efficiently calculating the difference between successive video frames
and then training a quantum convolutional neural network by replacing the
convolution operation with a quantum inner product estimation [15].

The classification performance of the Q3D-CNN appears to be lower com-
pared to the classical one. However, the trade-off between accuracy and efficiency
that our Q3D-CNN offers, appears to be an option worth considering, especially
in the context of time-critical applications. We should note here that the Q3D-
CNN becomes more efficient, compared to the 3D-CNN, as the kernel and layer
size increase, meaning that it could provide an attractive starting point for quan-
tum video processing.

Furthermore, the process of calculating the difference between the successive
video frames provides two advantages. Firstly, it significantly boosts the predic-
tion accuracy in both networks (59% mean to 80% for the classical networks
and 66% to 79% for the quantum versions). Secondly it is a very quantum-
efficient operation requiring only a constant number of quantum operations to
perform—independently of the input size— at the expense of a few more qubits.
This capability is only found in the quantum version and has no efficient classical
analog.
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