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Abstract
In this work, we present a novel framework to perform single-shot hand pose estimation using depth data as input. The method 
follows a coarse to fine strategy and employs several radial basis function networks (RBFNs) that are trained on a dataset 
containing only synthetically generated depth maps. Thus, compared to most contemporary deep learning approaches, it 
does not require the laborious annotation of large, real-world datasets. At run time, an initialization RBFN is used to provide 
a rough estimation of the hand’s 3D pose. Subsequently, several specialized RBFNs are employed to improve that initial 
estimation in an iterative refinement scheme. To train the RBFNs, we select a set of hand poses from a real-world sequence 
that are as diverse as possible. We use this representative set, along with a dense sampling of all possible rotations, as a seed 
to generate a large synthetic training set. The method is parallelizable, taking advantage of the inherent data parallelism of 
RBFNs. Furthermore, the method requires few real-world data and virtually no manual annotation. We perform a quantita-
tive evaluation of our method on a testing sequence of our own. We also present quantitative and qualitative results on a 
public dataset that is commonly used to evaluate hand pose estimation and tracking methods. We show that in all cases, our 
approach achieves promising results. Moreover, it can achieve comparable or even faster computational performance than 
current deep learning approaches but on a single CPU core, i.e., without requiring GPU processing.

Keywords  3D hand pose estimation · Radial basis functions · Neural networks · Synthetic dataset · Hand pose regression · 
Iterative refinement · Depth map

1  Introduction

The task of estimating the full pose of a human hand 
observed using visual input comprises a very interesting 
problem in the field of computer vision [9]. Theoretically, 
the problem is interesting because it is an instance of the 
more general problem of estimating the pose of arbitrary 
articulated objects. Effective methods to solve the problem 

can be used as building blocks enabling virtual and aug-
mented reality scenarios. Applications of such approaches 
include robotic teleoperation, game control, and medical 
rehabilitation. The problem in its full generality remains 
unsolved because of a number of interacting and complicat-
ing factors, such as the uniform hand appearance, the dexter-
ity and speed of the hand as well as the potential interaction 
with the environment.

In this work, we present a method for single-shot 3D pose 
estimation of an isolated (i.e., not interacting with the envi-
ronment) hand observed with a depth sensor. We deal only 
with the problem of pose estimation, assuming a bounding 
box provided by a hand detector [15, 20]. We propose the 
use of regressor radial basis function networks (RBFNs) for 
hand pose recovery. Recent approaches commonly rely on 
deep artificial neural networks [11, 22, 23]. Nevertheless, 
both the training and testing computational performance 
of RBFNs is favorable compared to most such approaches. 
Specifically, most successful deep learning approaches 
for 3D hand pose estimation (a) require training on large, 
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human-annotated training sets and (b) achieve real-time per-
formance using GPU acceleration. Our approach is trained 
on a completely synthetic dataset. Moreover, although it 
does not achieve as accurate results as the top performing 
deep learning approaches, it can achieve comparable or even 
faster performance using a single CPU core.

The proposed approach is split into an offline training 
phase and an online estimation phase. We start by captur-
ing a long sequence of widely varying hand poses using an 
RGBD sensor. The sequence is processed offline similarly to 
[36]. In contrast to that work however, we discard the real-
world depth maps and only keep the hand poses. These poses 
seed the synthetic generation of a large hand pose data-
base. Firstly, the most distinctive hand poses are selected, 
essentially discarding very similar ones. A large number of 
rotations are uniformly sampled, and for each combination 
of rotation and hand pose, a depth map is generated. This 
constitutes a database of synthetic depth maps with known 
hand pose and global hand rotation. Using this dataset, we 
train a large number of RBF networks, each specialized in 
recovering the hand articulation given the global hand rota-
tion or predicting global hand rotation given an articulation. 
Furthermore, an RBFN is trained in a subset of all the hand 
pose combinations so that it can provide a rough estimate of 
an observed depth map. During run time, this rough estima-
tion is used to initialize an iterative search that employs the 
specialized RBFNs to refine its initial estimation. After we 
conclude with the training of our networks, we proceed to 
the estimation phase. Given a new observation of a hand in 
the form of a cropped depth map, we derive an initial estima-
tion of the hand pose using the initialization RBFN. Then, 
with the use of an iterative search scheme employing the 
specialized RBFNs we improve the initial estimation. After 
a predetermined number of epochs, we stop the refinement, 
yielding the final estimation of the hand pose.

2 � Related work

The problem of visual hand pose estimation is a long-stand-
ing one in the field of computer vision. Works as early as 
1994 have addressed it [29]. The computational load of the 
method proposed by Rehg and Kanade [29] was too large 
for commodity processors back then, and therefore, special-
ized hardware was required. The steady, exponential increase 
in available computational power as well as the success of 
depth sensors have helped renew the interest in the prob-
lem [24, 27]. More recently, the success of deep learning in 
computer vision has also given new interest in this problem 
[11, 22].

An overview on the subject can be found in the review 
work by Erol et al. [9]. In that work, the authors categorize 
the methods on hand tracking according to the level of detail 

of the estimated pose. This ranges from simple 2D locali-
zation of some hand parts on the observed image (termed 
partial) to full estimation in 3D of all the rigid parts that 
comprise the hand (called full degrees of freedom—DoF). 
Another categorization discriminates between methods 
that can perform single-shot pose estimation (called single 
frame) and those that perform tracking (termed model-based 
tracking methods). In an evolution of these terms, single 
frame corresponds to discriminative methods and model-
based tracking to generative ones, as used, for example, in 
[22].

In general, discriminative methods require a time-con-
suming training phase, learning a direct mapping from 
observations to the hand pose space. At run time, the com-
putational requirements of these methods are usually low. 
On the downside, accuracy is determined during the training 
phase. In principle, it is not possible to improve this accu-
racy at test time without resorting to a slower generative 
methodology. On the other hand, given a candidate pose, 
generative methods are in a position to synthesize features 
that are directly comparable to the observations. By quanti-
fying this comparison, the task is reduced to an optimization 
problem. The parameters of this optimization determine the 
desired hand pose. Because of the online feature generation, 
this category is usually more computationally intensive than 
discriminative approaches. On the other hand, the accuracy 
of a generative method can usually be improved by using 
more computational power.

2.1 � Generative methods

Generative methods employ a kinematics and appearance 
model of the hand during the estimation process to synthe-
size image features. These features are compared to respec-
tive ones extracted from the observed image. Candidate 
feature types may be edges, depth information, skin color, 
or even the full-hand appearance. A quantification of the fea-
ture comparison for varying poses of the hand model serves 
as an objective function to an optimization procedure. Thus, 
the original problem is effectively reduced to an optimiza-
tion one with search space the parameterization of the hand 
model. Due to the high dimensionality of the configuration 
space though, the computational performance of these meth-
ods is limited. A big disadvantage of such methods is the 
requirement of initialization. Most such methods begin the 
search for the optimum solution from previous estimations, 
effectively making the assumption of temporal continuity 
between consecutive frames in an image sequence. On the 
positive side, these methods can be easily adapted to differ-
ent situations such as varying lighting conditions or object 
manipulation. The research areas of model-based methods 
include the construction of efficient and realistic 3D hand 
models, the dimensionality reduction in the configuration 
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space, and the development of fast and reliable tracking 
algorithms to estimate the hand posture.

The input to generative methods can be depth, multiview 
input, or even monocular RGB data. De la Gorce et al. [7] 
propose the use of temporal texture continuity and shading 
information, having monocular video as input. Athitsos and 
Sclaroff [2] achieve a 3D estimation from cluttered images. 
Other works try to retrieve depth information from RGB 
images through stereo matching [26, 40], where the acquired 
depth information may be treated like in depth images’ sce-
narios. The first generative approaches appeared during 
the 1990s [13, 28]. In these works, the authors employed 
a simplified model of the hand in order to achieve track-
ing, estimating multiple degrees of freedom (DoF). Some 
methods [4, 17] use variants of particle filtering to track 
predetermined hand models, or shape invariant hand models 
[18] from depth information.

In order to optimize the objective functions formulated 
by these methods, particle swarm optimization (PSO) [1, 8] 
has been proposed [24, 25] as a general-purpose black-box 
optimizer that can effectively tackle the resulting problems. 
Oikonomidis et al. [24] used PSO to minimize the discrep-
ancy between the 3D structure of hypothesized instances of 
a hand model and actual hand observations. Qian et al. [27] 
proposed a generative method combining the PSO and itera-
tive closest point (ICP) algorithms to speed up the search of 
the hand pose space. More works use ICP [10, 33], employ-
ing the articulated variant of this technique (articulated ICP).

2.2 � Discriminative methods

Discriminative methods estimate hand configurations 
directly from the input images using a precomputed map-
ping from the image feature space to the hand configuration 
space. Discriminative methods attempt to solve a difficult 
problem since the mapping from images to hand poses is 
highly nonlinear due to the variation of hand appearances 
under different views. In order to perform the mapping, a 
dataset is required that associates the input to the method, 
usually an image, with the target values that correspond to 
that input, that is, the respective hand configuration. This 
dataset is used to train a method and create the desired map-
ping. During estimation, the input can be mapped to the 
closest corresponding target that the method has learned, or 
interpolate to a new target value creating a regressed estima-
tion of the input. For increased accuracy of these methods, a 
large training dataset is useful to cover the large hand space. 
Consequently, the training phase of such methods is usually 
time-consuming. On the positive side, discriminative meth-
ods are in general fast at run time, since the training phase 
is performed offline. They require only a single camera and 
have no need of initialization in order to perform an estima-
tion. A particular property of discriminative methods is that 

they can be easily specialized to specific hand configura-
tions. The research areas of discriminative methods include 
the selection of appropriate training algorithms, the use of 
suitable learning techniques, the creation and annotation of 
large datasets, and the development of training models that 
can generalize to unseen data.

For discriminative methods, many learning procedures 
and algorithms have been proposed and used, from k-nearest 
neighbor searches to deep convolutional neural networks. 
Wang and Popovic [39] use a glove to track a 3D hand and 
employ nearest neighbor approach to achieve tracking at 
interactive rates. Different variants of random decision for-
ests are also used in several works [16, 34, 37], for regress-
ing to a 3D hand estimation. A learning method based on 
relevance vector machines (RVM) [35] has also been pro-
posed to estimate the hand pose from multiple cameras [6].

Ge et al. [11] present a discriminative method based on 
convolutional neural networks (CNNs). They estimate joint 
locations using three different projections of an observed 
point cloud. The projection viewpoints are determined using 
PCA on the segmented point cloud. The resulting heat maps 
are fused in a single-pose estimation by approximating them 
as Gaussians and using a prior of hand configuration con-
straints. The discriminative method by Oberweger et al. [23] 
employs three different CNNs as three parts of a hand pose 
estimation methodology. The input to the first net is a depth 
map and the output an estimated hand pose. The second net 
is trained to synthesize a depth map given a hand pose. The 
third map can compare the observed and the synthetic depth 
maps, proposing an update for the estimation of the hand 
pose. The method forms a loop out of these three nets, with 
the output of the comparison net provided to the synthesizer 
net and back to improve the initial estimation. Qian et al. 
[27] propose a generative method combining the particle 
swarm optimization and iterative closest point algorithms 
to speed up the search of the hand pose space.

2.3 � Relation to the proposed approach

Our work is closely related to works by Romero et al. [30] 
and Tompson et al. [36]. Romero et al. [30] present a sys-
tem to recover the hand pose from monocular RGB input 
using histogram of oriented gradients features. Similarly to 
our approach, they propose the search over a large synthetic 
database for the entry (or entries) with the closest features 
to the observed ones. On the other hand, the use of RGB 
data limits the discriminative ability of their feature space, 
making it imperative to use temporal coherency as a strong 
prior in the search. In contrast to this, our approach relies on 
depth data and therefore it can perform single-shot estima-
tion. Tompson et al. [36] propose the use of an early genera-
tive RGBD-based approach [24] to annotate a large set of 
input hand poses instead of manual annotation. This dataset 
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is used to train a deep convolutional neural network that 
learns to estimate specific landmarks of the human hand. 
An inverse kinematics procedure produces the final hand 
pose based on this estimation of landmarks. Similarly, in 
our work we automate the task of annotating input data. In 
contrast to [36], we use the output of this annotation to gen-
erate a much larger synthetic dataset which we then proceed 
to learn. Learning from synthetic data is problematic in deep 
neural networks since they rely in the statistics of the input 
images across all scales. On the other hand, the regression 
method we adopt, RBF networks, is able to abstract away the 
small details of the input data, thus generalizing well from 
synthetic training data to real-world input.

Our work is also closely related to works on dataset gen-
eration and augmentation. A deep convolutional architecture 
is presented by Oberweger et al. [22] that can generate pre-
dictions of joint locations in the form of 2D heat maps. The 
authors also propose the use of a bottleneck in the deep net-
work architecture, to enforce a strong prior on natural hand 
poses. The predicted joint positions are refined by another 
network to improve estimation accuracy. In a method pro-
posed by Bellon et al. [3], a glove with motion sensors is 
used to capture hand poses and augment an existing dataset 
with these poses.

3 � Method

Our goal is to recover the global position, orientation, and 
full articulation of a human hand observed by a depth sen-
sor. Toward this end, we parameterize the pose space of 
the human hand as a 27-dimensional vector (see below for 
details). The task is therefore reduced to one of param-
eter estimation, where the parameters of interest are the 

full-hand pose vector � . We propose to train radial basis 
function networks (RBFN) [5] to regress directly from an 
input depth map to this pose vector. This type of artificial 
neural network uses radial basis functions as activation 
functions. The output of the network is a linear combina-
tion of radial basis function activations of the input using 
the learned neuron parameters. In our case, an RBFN 
accepts as input a depth map containing a hand and out-
puts the hand pose vector. We follow a training process 
that consists of two steps. The first step regards choosing 
the hyper-parameters of the network, namely � , the stand-
ard deviation of the RBFs and the RBF centers � . This 
evaluation is performed on a small dataset. The second 
step is the main one, which is responsible for learning the 
network weights � on the full training dataset.

In our work, we use a 27-parameter hand model for 
representation, similar to [24]. A hand pose � is a vector 
defined as � = (x, y, z, qx, qy, qz, qw,�1,�2,… ,�20) . The first 
three values x, y, z define the global 3D position of the hand 
model, as an anchor point on it, specifically a predetermined 
point on the palm. The next four values qx, qy, qz, qw define 
a quaternion that determines the global rotation of the hand 
model in the 3D space around the anchor point of the model. 
Each of the remaining 20 parameters �1,… ,�20 describes 
an angle of a joint of the hand, defining the full articulation 
of the hand.

The method is divided into two phases, the training 
phase and the estimation phase. The training phase consists 
of preparing the training set and training an initialization 
RBFN and specialized RBFNs. The estimation phase uses 
the parameters learned during the training phase in order to 
estimate the hand pose given a single depth frame of a test 
set. Figure 1 illustrates the pipeline during the training phase 
and also demonstrates an example of the estimation phase.

Fig. 1   Top left: Sets containing 
|A| training samples are used 
to train |R| different rotation-
specialized RBFNs. This is 
achieved by fixing the rotation rj 
each time and learning the pairs 
(Ren(�i,j),�i,j) for i = 1,… , |A| . 
Bottom left: Symmetrically to 
top left, exchanging the roles of 
rotations and articulations. Top 
right: Sample execution of the 
IRA for 2 epochs, control flow 
shown using red arrows. See 
text for details. Bottom right: 
Illustration of an RBFN with 
|A| number of centers, and the 
weighted sum of its hidden neu-
rons composing the estimation 
�̃ to which we add the bounding 
box center �
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3.1 � Training preparation

In order to prepare our training dataset, we synthesize a large 
database of hand poses � along with their respective depth 
maps Ren(�) . To do so, we use two sets  and  which contain 
articulations and rotations, respectively. The set  is obtained 
by tracking a real-world sequence that captures diverse hand 
poses. Section 4.1 provides details on this sequence and the 
Ren functionality. To obtain  , we sample densely the quater-
nion space of rotations. The available rotation and hand articu-
lation samples are assumed to be densely, or even redundantly 
covering the respective spaces of rotations and hand articula-
tions. Therefore, out of the full rotation and articulation sets, 
we create a subset A ⊆  and R ⊆  using the KKZ initializa-
tion technique [14].

The KKZ algorithm [14] is an initialization technique for 
algorithms that employ the generalized Lloyd iteration. The 
KKZ initialization exploits the fact that the most distant input 
vectors are more likely to belong to different classes. KKZ 
orders the input so that the first two elements are the most 
distant ones, the third element is the most far apart from the 
previous two, and so forth. Specifically, in each iteration, the 
next selected vector is the one that maximizes the minimum 
distance from the already selected vectors.

By applying the KKZ algorithm, we sort the articulations 
in  and rotations in  and select the first |A| articulations 
and the first |R| rotations to use for training, where |A| ≤ || 
and |R| ≤ || are preselected sizes. Thus, we achieve a dense, 
evenly distributed training set that contains representatives of 
all the articulations in the captured sequence and of all rota-
tions in the 3D rotation group SO(3).

A significant design choice that must be made before the 
use of the KKZ algorithm is the metric that is required in order 
to quantify the distance of articulation or quaternion pairs. 
For quaternions, we use the dot product as a similarity metric. 
This can be converted to a distance metric by subtracting it 
from the unit:

where �� and �� are the two compared quaternions. In order 
to quantify the articulation distance, we employ the distance 
function that is also used for quantitative evaluation of the 
method (see Sect. 4.3). The metric quantifies the distance 
between two hand poses, taking into account their 3D global 
position, articulation and rotation. For two given hand poses 
�� and �� , the function that measures the distance between 
them is defined as

where L1 and L2 are the landmarks of hand poses �� and 
�� , respectively, and n is the number of landmarks on our 

(1)DQ(��, ��) = 1 − (�� ⋅ ��),

(2)D(��, ��) =
1

n

n∑

l=1

||L1l − L2l ||2

model. To quantify the distance between articulation pairs, 
we fix the rotation of the two compared hand poses. It is easy 
to see that, since this distance is defined as the average of 
point distances, its unit of measurement is the same as these 
distances, in our case millimeters (mm).

Given that the desired output of the method is a full 
27-dimensional hand pose containing the global 3D posi-
tion px, py, pz of the hand, the naive approach would be to 
use the RBFNs to directly regress from the depth map to 
the global position. Learning this relationship is not desir-
able though, because it would require a prohibitively large 
amount of training samples. Furthermore, the relationship 
to be learned is rather simple, since it roughly amounts to 
translating and scaling a reference depth map according to 
the camera parameters.

Based on this intuition, we could use the 3D position 
of the center of the bounding box � that encloses the hand 
model as a rough estimation of the global position. But 
computing the center � of the bounding box at the observed 
hand depth is not sufficient because the anchor point of the 
employed hand model will not necessarily coincide with � . 
For this reason, we also compute and learn the 3D offset 
� = � − � of the model’s position from the center � . We 
store � instead of px, py and pz for the purposes of training 
and train accordingly our RBFNs to regress for these param-
eters. Later, during evaluation, we use the regressed offset 
and add it to the bounding box position of the estimated hand 
depth map to recover the global hand position.

RBFNs compare the data with centers to make an estima-
tion, given their radial distance. In our case, both the data 
and the centers of the network are depth maps; thus, the 
employed RBFNs must quantify the comparison between 
depth maps. Given that the role of these RBFNs is to quan-
tify the discrepancy between hand poses, or global hand ori-
entation, it is necessary to disentangle this comparison from 
the global hand position. To do so, depth normalization must 
be applied to the compared depth maps. Specifically, each 
training depth map is normalized by subtracting the median 
of the nonzero values and adding a fixed depth value.

All the pairs of depth images Ren(�) and the respective 
hand poses � which are |A| ∗ |R| in total form our training 
set. A subset of this training dataset is used to train the ini-
tialization RBFN, whereas the whole training set is used to 
train the rest of the networks. Each specialized RBFN uses 
a different subset of the training set that corresponds to its 
specialization.

3.2 � Training the initialization RBFN

An RBFN must be trained so that it can be used as an initial-
ization step of the iterative refinement algorithm (Sect. 3.4). 
We select the k first articulations and rotations from our sets 
A and R that will be used to train the initialization RBFN, 
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due to their diversity from the KKZ ordering. We create the 
k2 poses � by combining the articulations and orientations 
of this training set. Having the pairs of poses with their cor-
responding depth maps Ren(p) as input, we train the network 
and store its parameters Cinit, �init, �init.

The selected articulations and rotations are limited to the 
number k which is smaller than the |A| and |R| . Apart from 
practical limitations such as memory usage, it is undesir-
able to train a single RBFN on all the available training data 
because the resulting network would be very slow during 
evaluation. Instead, we choose the solution of sparsely sam-
pling the full pose set to train the initialization RBFN. The 
specialized RBFNs take over the task of refining its initial 
estimation.

3.3 � Training specialized RBFNs

Having a single RBFN trained on every possible articula-
tion and orientation is not efficient; thus, the specialized 
networks take over the task of refining an initial estimation 
by learning all rotations for a fixed articulation and vice 
versa. Each articulation a ∈ A and orientation r ∈ R is used 
to train, respectively, |A| and |R| specialized RBFNs, so that 
each RBFN is specialized in a specific articulation or in a 
specific orientation.

3.3.1 � Articulation‑specialized RBFNs

Each RBFNai is trained separately, for i = 1,… , |A| . The 
training input for RBFNai is a matrix containing hand 
poses that have a fixed articulation ai ∈ A for all rotations 
R and their corresponding depth maps. Specifically, for the 
RBFNai the training input consists of input and target pairs

where �i,j is a hand pose with articulation ai and rotation rj , 
j = 1,… , |R| and Ren(�i,j) its respective depth map. The out-
put parameters of the training that are stored for use during 
the estimation phase are the parameters of each of the net-
works Cai, �ai, �ai for each articulation-specialized RBFN.

3.3.2 � Rotation‑specialized RBFNs

Similarly to the previous case, we fix the rotation rj and train 
the networks RBFNrj for every articulation in A. The train-
ing of every network RBFNrj is composed of the pairs of 
training input and their corresponding targets

(3)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ren(�i,1)

⋮

Ren(�i,j)

⋮

Ren(�i,�R�)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

�i,1
⋮

�i,j
⋮

�i,�R�)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

The learned parameters of the networks in this case are 
Crj, �rj, �rj.

3.4 � Iterative refinement algorithm (IRA)

The focus of this work is the estimation of the hand pose 
having as input a crop of the hand within a depth map. 
We do not focus on the detection of the hand in the image, 
assuming that it is provided to the system. Therefore, we 
assume the position of the bounding box that contains the 
hand to be available during the estimation phase. To estimate 
the global position of a hand pose � , we use the position of 
the bounding box that contains the depth image of the given 
hand pose. The estimation of a hand pose is derived from 
an RBFN that is chosen according to an iterative refinement 
scheme. This scheme uses an initial approximation of the 
hand pose. Then, it iteratively finds an articulation from the 
set A, and using the corresponding RBFN that was trained on 
that articulation, it returns a new estimation. This estimation 
is used to find a rotation from the set R. In the last step of the 
iteration, the corresponding rotation-specialized RBFN is 
used, computing a new estimation, that can now be provided 
to the start of the iteration.

More specifically, to evaluate a single test depth 
image t we start by finding a rough approximation 
�̃ = RBFNinit(t;Cinit, 𝛽init, 𝜃init) which is computed using our 
initialization RBFN. Subsequently, for a number of iterations 
which we call epochs, we find the closest articulation ai , 
from the set A that was used for training, to the articulation 
ã of the estimated pose �̃ . We input the test image t to the 
RBFNai that was trained upon this closest articulation to 
obtain a new estimation �̃ = RBFNai(t;Cai, 𝛽ai, 𝜃ai) . Then, 
we find the orientation rj from the set R that is closest to 
the orientation r̃ of the newest estimation �̃ . An update of 
the estimation �̃ is performed by the output of the rotation-
specialized RBFN �̃ = RBFNrj(t;Crj, 𝛽rj, 𝜃rj) . We repeat 
these steps as mentioned, starting from the beginning of the 
iteration. Iteratively we look up the closest articulation and 
orientation and update the estimation accordingly, for a pre-
determined number of epochs. The last RBFNrj provides the 
final estimation �̃.

For estimating the position of a hand pose, we need the 
vector (p̃x, p̃y, p̃z) that contains the estimated regressed off-
sets from the center of a bounding box. Given the vector � 
that holds the center of the test’s image bounding box, we 

(4)
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add the two vectors in order to obtain the final global posi-
tion of the hand pose.

Algorithm 1 outlines the iterative refinement algorithm. 
The function FindClosest Articulation returns the closest 
articulation to its first argument, from the set of articula-
tions A by measuring the distances of the articulations to 
the input articulation. The distance is computed as defined 
in Eq. 2 by fixing the rotation of the two comparing hand 
poses. Similarly, the function FindClosestRotation returns 
the closest rotation to its first argument from the set R by 
measuring rotation distances to the provided rotation. The 
rotations are actually quaternions; thus, the distance between 
two rotations is equivalent to the distance between two qua-
ternions. The distance between two quaternions �� and �� is 
defined in Eq. 1.

Since at each iteration we search the space of our training 
data to find the closest articulations and rotations, the run 
time of the estimation is proportional to the size of the train-
ing dataset. Thus, for the selection of the number of epochs 
we must consider that with increased training set we increase 
the run time of the estimation phase.

For a visualization of the proposed pipeline, we refer 
again to Fig. 1. The example illustrates the run of IRA 
for 2 epochs and indicates with red arrows the closest 
articulations and rotations found in sets A and R, respec-
tively. Specifically, at the beginning RBFNinit estimates 
an approximation �̃ that is used to initialize the iterative 
search. Using this estimation, in the first epoch the method 
finds the articulation a1 that is the closest articulation in 
the set A to the approximated articulation ã . RBFNa1 esti-
mates a pose �̃ . Symmetrically to the previous step, the 
method proceeds to find the rotation rj that is the clos-
est rotation among the ones in the set R to the estimated 

rotation r̃ . Then, RBFNrj estimates a pose �̃ . In the second 
epoch, we repeat the previous actions, finding this time the 
articulation ai and rotation r|R| as the closest ones, respec-
tively. Therefore, RBFNr|R| is used to estimate the final 
hand pose �̃.

4 � Experimental evaluation

4.1 � Developed datasets

Training datasets For the purpose of generating a number 
of synthetic training datasets, we recorded a sequence S1 of 
a human hand performing a large variety of finger articula-
tions. S1 is about 2 minutes long and contains 3180 frames.

We employ the method presented in [24] to track S1 with 
a large budget, yielding accurate results. The manual initiali-
zation required by this method is the only manual annotation 
required in the proposed pipeline. From the implementation 
of [24], we also use the module that synthesizes candidate 
depth maps to generate our synthetic dataset. We refer to the 
functionality of this module as Ren in Sect. 3.

After tracking S1 , we use the obtained results to create the 
set  that contains 3180 articulations. By sampling densely 
the quaternion space, we also create the set  using 1024 
distinct rotations. We then employ the KKZ algorithm to 
sort  and  so as the most diverse poses and rotations, 
respectively, come first in this ordering. This allows for the 
generation of datasets of various lengths that best cover the 
articulation and rotation spaces for a given dataset size. 
Throughout the design and training of the proposed method, 
we design in this way four synthetic datasets:

–	 We combine the full  and  sets to create 
3180 × 1024 = 3, 256, 320 hand poses. Using the func-
tion Ren, we also acquire the rendered depth maps of 
these poses, ending up with the complete synthetic train-
ing set TC.

–	 We select the first 1024 articulations and 1024 rotations 
to use as the full training dataset TF . Thus, TF consists 
of 1024 × 1024 = 1, 048, 576 hand poses and their cor-
responding rendered depth maps.

–	 For training the initial RBFN ( RBFNinit ), we set the 
number of chosen articulations/rotations to k = 100 as 
described in Sect. 3.2 and end up with the dataset TI that 
contains a total of 100 × 100 = 10, 000 hand poses.

–	 Two even smaller subsets with the first 40 rotations and 
40 hand articulations are used to develop the dataset TM 
of 40 × 40 = 1600 hand poses. This dataset was used to 
train initialization and specialized RBFNs to fine tune the 
meta-parameters of the proposed method, as outlined in 
Sect. 4.2.
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As already outlined, the complete dataset TC is KKZ ordered, 
and all the other ones are derived exploiting this order. This 
implies that the four datasets above are each a subset of 
its immediately larger one, i.e., the following relationship 
holds: TM ⊂ TI ⊂ TF ⊂ TC.

Testing dataset We recorded a second sequence, S2 
showing similar hand articulations as S1 . S2 contains 2710 
frames. We tracked S2 with the method of [24] and a large 
computational budget. This sequence referred later in the 
text as dataset E was used to evaluate the performance of 
the proposed method on real data with similar articulation 
ranges to the training set TF (see Fig. 5).

4.2 � RBFN training details

We use the implementation of radial basis function networks 
by McCormick [19]. RBFNs have two free parameters, the 
number of radial basis functions (RBFs) also known as 
centers and the shape of these functions, determined by a 
parameter � . In our method, we add one more hyper-param-
eter, epochs, which is the number of iterations required to 
complete the refinement of the initial pose by the iterative 
refinement scheme IRA. In order to estimate the best values 
for these three meta-parameters, we first trained our model 
on the TM dataset as outlined in Sect. 4.1. We also created a 
validation dataset that contained frames from the TC dataset 
that were not included in the TF dataset.

We found that the best validation set performance was 
achieved using the training samples as the centers of our 
RBFNs as shown in Fig. 2. Intuitively, this means that the 
best performance is achieved when memorizing the training 
dataset, interpolating between its samples only for unseen 
poses.

We also varied the parameter � over a large range 
of values, spanning several orders of magnitude. We 
found that the best validation set accuracy was achieved 
for � = 10, 095 . Figure  3 presents the results of this 
experiment.

Finally, the number of iterations for IRA was set to 6, 
achieving the best trade-off between estimation time and 
accuracy. Even though the best performance is achieved 
for 8 epochs as presented in Fig. 4, we prefer 6 epochs as 
the estimation time increases for every additional epoch 
with only a slight increase in performance. This is clearly 
shown in Fig. 4 since the increase in run time is linear 
with the number of epochs (about 150ms per epoch in 
our implementation), while the performance improvement 
after 6 epochs is disproportionately smaller.

Fig. 2   Validating RBFNs for different number of centers plus a model 
trained on all training samples

Fig. 3   Validating RBFNs for various � values

Fig. 4   Validating RBFNs for various numbers of epochs
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4.3 � Quantitative evaluation

In order to evaluate quantitatively the performance of our 
method, we reuse the error metric over hand poses in Eq. 2. 
We adopt the common approach of averaging the distance 
of multiple landmark points between two hand poses. In the 
results below, the distance is always in mm.

In a first experiment, we applied our method to the dataset 
E. Figure 5 illustrates the results of this experiment. The 
graph plots the percentage of poses that have an average 
error under a certain threshold. We compare our proposed 
method to that of using only the initialization RBFN. Evi-
dently, IRA improves significantly the initial estimation.

We also evaluate our method on the publicly available 
MSRA hands dataset presented in [31]. MSRA consists of 
17 different hand gestures performed by nine different sub-
jects. These gestures are chosen from the American Sign 
Language, spanning as much as possible the finger articula-
tion space. Each gesture is recorded for 500 frames, for a 
total of 76, 500 frames. The provided depth maps are anno-
tated with 3D joint locations.

Table 1 presents average distance errors for four different 
methods that were tested on the MSRA dataset along with 
our proposed method. The four methods were trained on 
eight subjects of the MSRA dataset and tested on the held-
out subject.

On the contrary, in our method, we tested the same 
RBFNs on all nine subjects, since our method is trained on 
the synthetic dataset TF . This means that our approach has 
never seen any frame of the MSRA dataset, or any other 
real-world dataset for that matter. This is clearly disadvan-
tageous to our method: As shown by the work by Supancic 
et al. [32], Table 5, cross-dataset generalization is far from 
being solved. It should be also stressed that there is no other 
way to compare these methods on the MSRA dataset, since 
our method can only be trained on a dataset that has a spe-
cific structure, as outlined in Sect. 4.1. Under these circum-
stances, we observe that our method has the largest error 
compared to the other methods. Even though the error we 
obtain is higher than the other approaches, it is satisfactory 
as seen by the qualitative results in Sect. 4.4, illustrating that 
our method is capable of generalization.

To fully understand the behavior of our method com-
pared to a state-of-the-art deep learning method, we con-
duct another experiment. We used the implementation of 
DeepPrior++ as presented in [21]. In order to achieve a fair 
comparison, we trained that network on, TI , i.e., the synthetic 
dataset that was used to train RBFNinit . It should be noted 
that, due to memory and computational time limitations, it 
would not be possible to train DeepPrior++ on TF . Further-
more, training our method on the MSRA dataset (or any 
other real-world dataset for that matter) is not possible, given 
the specific dataset structure that is required by our method. 
For performance comparison, we evaluated the hand poses 
from the MSRA dataset for all the subjects. Figure 6 shows 
the percentage of hand poses having average error less than a 
threshold, for the cases: (a) our full method, (b) for RBFNinit 
only, and (c) for DeepPrior++. Compared with the first 
experiment, we can observe that our method performs worse 
in MSRA than in E. This is attributed to the differences on 
the hand shapes and sizes as well as the varying depth ranges 
in the two datasets. Still, the performance is very appeal-
ing given the fact that the method achieves a generalization 
from synthetic to real data. The results also demonstrate that 

Table 1   Comparison of our whole method with other methods from 
the literature on the MSRA dataset

Method Median distance error

Wan et al. [38] 25 ± 2 mm
Sun et al. [31] 28 ± 2 mm
Wan et al. [37] 32 ± 2 mm
Ge et al. [12] 20 ± 2 mm
Ours 48.93 mm

Fig. 5   Results on the test sequence E. Percentage of hand poses within an error threshold, plotted as a function of this threshold. The two differ-
ent lines show the performance of the whole method compared to the initialization RBFN
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although DeepPrior++ can better generalize from synthetic 
to real data compared to the initial RBFN, the performance 
of RBFNinit is still quite close. Even more importantly, the 
complete, proposed method ( RBFNinit + IRA ) outperforms 
DeepPrior++.

4.4 � Qualitative evaluation

Figure 7 shows representative frames of estimated hand 
poses on the captured test sequence with their respective 
manually annotated ground truths. In Fig. 8, we present 
images of estimated hand poses on the MSRA dataset. On 

left is shown the test depth image with the annotated ground 
truth and on right the estimated pose.

We observe that the estimations are quite accurate, and 
the method manages to generalize well on E and on MSRA, 
despite the increased average error. We may notice that for 
subjects with different hand shape variations (such as Sub-
ject 5), the estimations are slightly worse from other sub-
jects, given the fact that our method is trained using a single 
hand shape.

In Fig. 9, we present some fail cases of hand pose esti-
mations. We observe how our method tries to fit regressed 
hand poses to the input depth map by predicting wrong 
finger articulations that project to similar depth maps to 

Fig. 6   Results on MSRA hands dataset. Percentage of hand poses 
within a threshold plotted as a function of this threshold. The three 
different curves show the performance of the whole method com-

pared to the initialization RBFN and DeepPrior++. The latter was 
trained on the same training set as the initialization RBFN (i.e., on TI)

Fig. 7   Qualitative results on 
captured test sequence S2 . Left 
is the RGB test image, middle is 
the manually annotated ground 
truth, and right is the final 
estimation
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the input. Other cases show how the method may fail on 
articulation estimations more often than on rotation esti-
mations, as the rotation is close to the desired one but the 
articulation is the one that seemingly increases the error. 
Furthermore, other cases show that for difficult poses with 
few distinctive features (as in the case of a closed palm) 
the method fails to estimate accurately the rotation of the 
hand.

4.5 � Computational performance

All the experiments presented above were conducted using 
a computer equipped with an Intel Core i7-4790 CPU at 
3.60GHz × 8 and 16 GB of RAM. The whole training on TF 
takes about 3 days, while the estimation takes, on average, 
about 1 second per test image. It should be stressed, how-
ever, that the evaluation of an RBF takes on average less 
than 1.6 milliseconds using a single core of the CPU. In our 

Fig. 8   Qualitative results on 
MSRA dataset: The left part 
of each image is the test depth 
image with the annotated 
ground truth. The right part of 
each image is the final estima-
tion
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implementation, the real-world performance of the method 
is limited by input/output (I/O) operations. Since we have 
precomputed thousands of RBF networks at training time, 
it is impossible to have them all available in main memory. 
Therefore, whenever the iterative scheme needs to use a 
new RBF network, it is loaded from disk, slowing down 
the process. A smart caching scheme can significantly help, 
especially in the case of tracking a hand that moves rather 
smoothly. In such a case, the temporal continuity assump-
tion will directly translate to fewer cache misses, effectively 
eliminating I/O operations time. Alternatively, one can just 
resort to adding enough RAM to hold all the RBFNs, 64 GB 
for the case of the RBFNs resulting from TF.

5 � Summary and discussion

We presented a method for single-shot hand pose estima-
tion using a depth map as input. We created a large syn-
thetic dataset and trained multiple RBFNs on it. We used 
an initial RBFN to compute a rough estimation of hand 
pose and articulation given a depth image. Then, with the 
use of specialized RBFNs, we managed to iteratively refine 
this approximation arriving to a final estimation. The use 
of RBFNs allows our method to make use of a large syn-
thetic dataset. Despite the fact that the method is trained 
only on this synthetic dataset, we experimentally verified 
that it generalizes well to real-world data. Moreover, we 
validated our method in order to tune the hyper-parameters 
of the proposed model and we experimentally identified 
optimal values for all the hyper-parameters of the proposed 

method. We tested our method on two different testing 
datasets. The first one is a sequence we captured, and the 
second is a publicly available dataset that is commonly 
used to assess 3D hand pose estimation methods. We com-
pared quantitatively our method with a recent state-of-the-
art deep learning method from the relevant literature. To 
further illustrate the performance of our method, we also 
presented qualitative results. The obtained results demon-
strate that RBFNs can generalize quite well when learning 
synthetic data. This is in contrast to most state-of-the-art 
methods that cannot even achieve cross-dataset generali-
zation [32]. A RBFN does not search for patterns in local 
partitions of the data. Instead, it associates the input and 
output data according to the learned distances from its 
centers. A standalone RBFN might not perform satisfac-
torily. With the refinement of this initial suggestion, mul-
tiple specialized RBFNs can improve the final estimation, 
approaching the performance of state-of-the-art methods.

Future work includes the investigation of the effects of 
parallax distortion and the generalization across human 
hand sizes and shapes. Also, we may exploit the ability 
of the proposed method to incorporate rotation or pose 
constraints by applying it to the egocentric observation 
scenario as well as on the scenario of detecting a small 
vocabulary of predefined gestures.
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Fig. 9   Fail cases for both data-
sets (two first rows: E, bottom 
row: MSRA)
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