
Vol.:(0123456789)1 3

Pattern Analysis and Applications
https://doi.org/10.1007/s10044-019-00801-7

THEORETICAL ADVANCES

Single‑shot 3D hand pose estimation using radial basis function
networks trained on synthetic data

Vassilis C. Nicodemou1,2  · Iason Oikonomidis2  · Antonis Argyros1,2 

Received: 16 July 2018 / Accepted: 14 February 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
In this work, we present a novel framework to perform single-shot hand pose estimation using depth data as input. The method
follows a coarse to fine strategy and employs several radial basis function networks (RBFNs) that are trained on a dataset
containing only synthetically generated depth maps. Thus, compared to most contemporary deep learning approaches, it
does not require the laborious annotation of large, real-world datasets. At run time, an initialization RBFN is used to provide
a rough estimation of the hand’s 3D pose. Subsequently, several specialized RBFNs are employed to improve that initial
estimation in an iterative refinement scheme. To train the RBFNs, we select a set of hand poses from a real-world sequence
that are as diverse as possible. We use this representative set, along with a dense sampling of all possible rotations, as a seed
to generate a large synthetic training set. The method is parallelizable, taking advantage of the inherent data parallelism of
RBFNs. Furthermore, the method requires few real-world data and virtually no manual annotation. We perform a quantita-
tive evaluation of our method on a testing sequence of our own. We also present quantitative and qualitative results on a
public dataset that is commonly used to evaluate hand pose estimation and tracking methods. We show that in all cases, our
approach achieves promising results. Moreover, it can achieve comparable or even faster computational performance than
current deep learning approaches but on a single CPU core, i.e., without requiring GPU processing.

Keywords  3D hand pose estimation · Radial basis functions · Neural networks · Synthetic dataset · Hand pose regression ·
Iterative refinement · Depth map

1  Introduction

The task of estimating the full pose of a human hand
observed using visual input comprises a very interesting
problem in the field of computer vision [9]. Theoretically,
the problem is interesting because it is an instance of the
more general problem of estimating the pose of arbitrary
articulated objects. Effective methods to solve the problem

can be used as building blocks enabling virtual and aug-
mented reality scenarios. Applications of such approaches
include robotic teleoperation, game control, and medical
rehabilitation. The problem in its full generality remains
unsolved because of a number of interacting and complicat-
ing factors, such as the uniform hand appearance, the dexter-
ity and speed of the hand as well as the potential interaction
with the environment.

In this work, we present a method for single-shot 3D pose
estimation of an isolated (i.e., not interacting with the envi-
ronment) hand observed with a depth sensor. We deal only
with the problem of pose estimation, assuming a bounding
box provided by a hand detector [15, 20]. We propose the
use of regressor radial basis function networks (RBFNs) for
hand pose recovery. Recent approaches commonly rely on
deep artificial neural networks [11, 22, 23]. Nevertheless,
both the training and testing computational performance
of RBFNs is favorable compared to most such approaches.
Specifically, most successful deep learning approaches
for 3D hand pose estimation (a) require training on large,

 *	 Vassilis C. Nicodemou
	 nikodim@ics.forth.gr

	 Iason Oikonomidis
	 oikonom@ics.forth.gr

	 Antonis Argyros
	 argyros@ics.forth.gr

1	 Computer Science Department, University of Crete,
Heraklion, Greece

2	 Institute of Computer Science, Foundation for Research
and Technology - Hellas (FORTH), 100 N. Plastira,
700 13 Heraklion, Crete, Greece

http://orcid.org/0000-0001-8523-6749
http://orcid.org/0000-0002-9503-3723
http://orcid.org/0000-0001-8230-3192
http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-019-00801-7&domain=pdf

	 Pattern Analysis and Applications

1 3

human-annotated training sets and (b) achieve real-time per-
formance using GPU acceleration. Our approach is trained
on a completely synthetic dataset. Moreover, although it
does not achieve as accurate results as the top performing
deep learning approaches, it can achieve comparable or even
faster performance using a single CPU core.

The proposed approach is split into an offline training
phase and an online estimation phase. We start by captur-
ing a long sequence of widely varying hand poses using an
RGBD sensor. The sequence is processed offline similarly to
[36]. In contrast to that work however, we discard the real-
world depth maps and only keep the hand poses. These poses
seed the synthetic generation of a large hand pose data-
base. Firstly, the most distinctive hand poses are selected,
essentially discarding very similar ones. A large number of
rotations are uniformly sampled, and for each combination
of rotation and hand pose, a depth map is generated. This
constitutes a database of synthetic depth maps with known
hand pose and global hand rotation. Using this dataset, we
train a large number of RBF networks, each specialized in
recovering the hand articulation given the global hand rota-
tion or predicting global hand rotation given an articulation.
Furthermore, an RBFN is trained in a subset of all the hand
pose combinations so that it can provide a rough estimate of
an observed depth map. During run time, this rough estima-
tion is used to initialize an iterative search that employs the
specialized RBFNs to refine its initial estimation. After we
conclude with the training of our networks, we proceed to
the estimation phase. Given a new observation of a hand in
the form of a cropped depth map, we derive an initial estima-
tion of the hand pose using the initialization RBFN. Then,
with the use of an iterative search scheme employing the
specialized RBFNs we improve the initial estimation. After
a predetermined number of epochs, we stop the refinement,
yielding the final estimation of the hand pose.

2 � Related work

The problem of visual hand pose estimation is a long-stand-
ing one in the field of computer vision. Works as early as
1994 have addressed it [29]. The computational load of the
method proposed by Rehg and Kanade [29] was too large
for commodity processors back then, and therefore, special-
ized hardware was required. The steady, exponential increase
in available computational power as well as the success of
depth sensors have helped renew the interest in the prob-
lem [24, 27]. More recently, the success of deep learning in
computer vision has also given new interest in this problem
[11, 22].

An overview on the subject can be found in the review
work by Erol et al. [9]. In that work, the authors categorize
the methods on hand tracking according to the level of detail

of the estimated pose. This ranges from simple 2D locali-
zation of some hand parts on the observed image (termed
partial) to full estimation in 3D of all the rigid parts that
comprise the hand (called full degrees of freedom—DoF).
Another categorization discriminates between methods
that can perform single-shot pose estimation (called single
frame) and those that perform tracking (termed model-based
tracking methods). In an evolution of these terms, single
frame corresponds to discriminative methods and model-
based tracking to generative ones, as used, for example, in
[22].

In general, discriminative methods require a time-con-
suming training phase, learning a direct mapping from
observations to the hand pose space. At run time, the com-
putational requirements of these methods are usually low.
On the downside, accuracy is determined during the training
phase. In principle, it is not possible to improve this accu-
racy at test time without resorting to a slower generative
methodology. On the other hand, given a candidate pose,
generative methods are in a position to synthesize features
that are directly comparable to the observations. By quanti-
fying this comparison, the task is reduced to an optimization
problem. The parameters of this optimization determine the
desired hand pose. Because of the online feature generation,
this category is usually more computationally intensive than
discriminative approaches. On the other hand, the accuracy
of a generative method can usually be improved by using
more computational power.

2.1 � Generative methods

Generative methods employ a kinematics and appearance
model of the hand during the estimation process to synthe-
size image features. These features are compared to respec-
tive ones extracted from the observed image. Candidate
feature types may be edges, depth information, skin color,
or even the full-hand appearance. A quantification of the fea-
ture comparison for varying poses of the hand model serves
as an objective function to an optimization procedure. Thus,
the original problem is effectively reduced to an optimiza-
tion one with search space the parameterization of the hand
model. Due to the high dimensionality of the configuration
space though, the computational performance of these meth-
ods is limited. A big disadvantage of such methods is the
requirement of initialization. Most such methods begin the
search for the optimum solution from previous estimations,
effectively making the assumption of temporal continuity
between consecutive frames in an image sequence. On the
positive side, these methods can be easily adapted to differ-
ent situations such as varying lighting conditions or object
manipulation. The research areas of model-based methods
include the construction of efficient and realistic 3D hand
models, the dimensionality reduction in the configuration

Pattern Analysis and Applications	

1 3

space, and the development of fast and reliable tracking
algorithms to estimate the hand posture.

The input to generative methods can be depth, multiview
input, or even monocular RGB data. De la Gorce et al. [7]
propose the use of temporal texture continuity and shading
information, having monocular video as input. Athitsos and
Sclaroff [2] achieve a 3D estimation from cluttered images.
Other works try to retrieve depth information from RGB
images through stereo matching [26, 40], where the acquired
depth information may be treated like in depth images’ sce-
narios. The first generative approaches appeared during
the 1990s [13, 28]. In these works, the authors employed
a simplified model of the hand in order to achieve track-
ing, estimating multiple degrees of freedom (DoF). Some
methods [4, 17] use variants of particle filtering to track
predetermined hand models, or shape invariant hand models
[18] from depth information.

In order to optimize the objective functions formulated
by these methods, particle swarm optimization (PSO) [1, 8]
has been proposed [24, 25] as a general-purpose black-box
optimizer that can effectively tackle the resulting problems.
Oikonomidis et al. [24] used PSO to minimize the discrep-
ancy between the 3D structure of hypothesized instances of
a hand model and actual hand observations. Qian et al. [27]
proposed a generative method combining the PSO and itera-
tive closest point (ICP) algorithms to speed up the search of
the hand pose space. More works use ICP [10, 33], employ-
ing the articulated variant of this technique (articulated ICP).

2.2 � Discriminative methods

Discriminative methods estimate hand configurations
directly from the input images using a precomputed map-
ping from the image feature space to the hand configuration
space. Discriminative methods attempt to solve a difficult
problem since the mapping from images to hand poses is
highly nonlinear due to the variation of hand appearances
under different views. In order to perform the mapping, a
dataset is required that associates the input to the method,
usually an image, with the target values that correspond to
that input, that is, the respective hand configuration. This
dataset is used to train a method and create the desired map-
ping. During estimation, the input can be mapped to the
closest corresponding target that the method has learned, or
interpolate to a new target value creating a regressed estima-
tion of the input. For increased accuracy of these methods, a
large training dataset is useful to cover the large hand space.
Consequently, the training phase of such methods is usually
time-consuming. On the positive side, discriminative meth-
ods are in general fast at run time, since the training phase
is performed offline. They require only a single camera and
have no need of initialization in order to perform an estima-
tion. A particular property of discriminative methods is that

they can be easily specialized to specific hand configura-
tions. The research areas of discriminative methods include
the selection of appropriate training algorithms, the use of
suitable learning techniques, the creation and annotation of
large datasets, and the development of training models that
can generalize to unseen data.

For discriminative methods, many learning procedures
and algorithms have been proposed and used, from k-nearest
neighbor searches to deep convolutional neural networks.
Wang and Popovic [39] use a glove to track a 3D hand and
employ nearest neighbor approach to achieve tracking at
interactive rates. Different variants of random decision for-
ests are also used in several works [16, 34, 37], for regress-
ing to a 3D hand estimation. A learning method based on
relevance vector machines (RVM) [35] has also been pro-
posed to estimate the hand pose from multiple cameras [6].

Ge et al. [11] present a discriminative method based on
convolutional neural networks (CNNs). They estimate joint
locations using three different projections of an observed
point cloud. The projection viewpoints are determined using
PCA on the segmented point cloud. The resulting heat maps
are fused in a single-pose estimation by approximating them
as Gaussians and using a prior of hand configuration con-
straints. The discriminative method by Oberweger et al. [23]
employs three different CNNs as three parts of a hand pose
estimation methodology. The input to the first net is a depth
map and the output an estimated hand pose. The second net
is trained to synthesize a depth map given a hand pose. The
third map can compare the observed and the synthetic depth
maps, proposing an update for the estimation of the hand
pose. The method forms a loop out of these three nets, with
the output of the comparison net provided to the synthesizer
net and back to improve the initial estimation. Qian et al.
[27] propose a generative method combining the particle
swarm optimization and iterative closest point algorithms
to speed up the search of the hand pose space.

2.3 � Relation to the proposed approach

Our work is closely related to works by Romero et al. [30]
and Tompson et al. [36]. Romero et al. [30] present a sys-
tem to recover the hand pose from monocular RGB input
using histogram of oriented gradients features. Similarly to
our approach, they propose the search over a large synthetic
database for the entry (or entries) with the closest features
to the observed ones. On the other hand, the use of RGB
data limits the discriminative ability of their feature space,
making it imperative to use temporal coherency as a strong
prior in the search. In contrast to this, our approach relies on
depth data and therefore it can perform single-shot estima-
tion. Tompson et al. [36] propose the use of an early genera-
tive RGBD-based approach [24] to annotate a large set of
input hand poses instead of manual annotation. This dataset

	 Pattern Analysis and Applications

1 3

is used to train a deep convolutional neural network that
learns to estimate specific landmarks of the human hand.
An inverse kinematics procedure produces the final hand
pose based on this estimation of landmarks. Similarly, in
our work we automate the task of annotating input data. In
contrast to [36], we use the output of this annotation to gen-
erate a much larger synthetic dataset which we then proceed
to learn. Learning from synthetic data is problematic in deep
neural networks since they rely in the statistics of the input
images across all scales. On the other hand, the regression
method we adopt, RBF networks, is able to abstract away the
small details of the input data, thus generalizing well from
synthetic training data to real-world input.

Our work is also closely related to works on dataset gen-
eration and augmentation. A deep convolutional architecture
is presented by Oberweger et al. [22] that can generate pre-
dictions of joint locations in the form of 2D heat maps. The
authors also propose the use of a bottleneck in the deep net-
work architecture, to enforce a strong prior on natural hand
poses. The predicted joint positions are refined by another
network to improve estimation accuracy. In a method pro-
posed by Bellon et al. [3], a glove with motion sensors is
used to capture hand poses and augment an existing dataset
with these poses.

3 � Method

Our goal is to recover the global position, orientation, and
full articulation of a human hand observed by a depth sen-
sor. Toward this end, we parameterize the pose space of
the human hand as a 27-dimensional vector (see below for
details). The task is therefore reduced to one of param-
eter estimation, where the parameters of interest are the

full-hand pose vector � . We propose to train radial basis
function networks (RBFN) [5] to regress directly from an
input depth map to this pose vector. This type of artificial
neural network uses radial basis functions as activation
functions. The output of the network is a linear combina-
tion of radial basis function activations of the input using
the learned neuron parameters. In our case, an RBFN
accepts as input a depth map containing a hand and out-
puts the hand pose vector. We follow a training process
that consists of two steps. The first step regards choosing
the hyper-parameters of the network, namely � , the stand-
ard deviation of the RBFs and the RBF centers � . This
evaluation is performed on a small dataset. The second
step is the main one, which is responsible for learning the
network weights � on the full training dataset.

In our work, we use a 27-parameter hand model for
representation, similar to [24]. A hand pose � is a vector
defined as � = (x, y, z, qx, qy, qz, qw,�1,�2,… ,�20) . The first
three values x, y, z define the global 3D position of the hand
model, as an anchor point on it, specifically a predetermined
point on the palm. The next four values qx, qy, qz, qw define
a quaternion that determines the global rotation of the hand
model in the 3D space around the anchor point of the model.
Each of the remaining 20 parameters �1,… ,�20 describes
an angle of a joint of the hand, defining the full articulation
of the hand.

The method is divided into two phases, the training
phase and the estimation phase. The training phase consists
of preparing the training set and training an initialization
RBFN and specialized RBFNs. The estimation phase uses
the parameters learned during the training phase in order to
estimate the hand pose given a single depth frame of a test
set. Figure 1 illustrates the pipeline during the training phase
and also demonstrates an example of the estimation phase.

Fig. 1   Top left: Sets containing
|A| training samples are used
to train |R| different rotation-
specialized RBFNs. This is
achieved by fixing the rotation rj
each time and learning the pairs
(Ren(�i,j),�i,j) for i = 1,… , |A| .
Bottom left: Symmetrically to
top left, exchanging the roles of
rotations and articulations. Top
right: Sample execution of the
IRA for 2 epochs, control flow
shown using red arrows. See
text for details. Bottom right:
Illustration of an RBFN with
|A| number of centers, and the
weighted sum of its hidden neu-
rons composing the estimation
�̃ to which we add the bounding
box center �




Crj
βrj
θrj





RBFNa1

RBFNai

RBFNa|A|

p̃+ b

|A|

|R|

RBFNr1

RBFNrj

RBFNr|R|[p1,j, p2,j, . . . , pi,j, . . . , p|A|,j]

[pi,1, pi,2, . . . , pi,j, . . . , pi,|R|]




Cai
βai
θai





C1

C2

Cc

C|A|

init

a1

ai

a|A|

r1

rj

r|R|

Pattern Analysis and Applications	

1 3

3.1 � Training preparation

In order to prepare our training dataset, we synthesize a large
database of hand poses � along with their respective depth
maps Ren(�) . To do so, we use two sets  and  which contain
articulations and rotations, respectively. The set  is obtained
by tracking a real-world sequence that captures diverse hand
poses. Section 4.1 provides details on this sequence and the
Ren functionality. To obtain  , we sample densely the quater-
nion space of rotations. The available rotation and hand articu-
lation samples are assumed to be densely, or even redundantly
covering the respective spaces of rotations and hand articula-
tions. Therefore, out of the full rotation and articulation sets,
we create a subset A ⊆  and R ⊆  using the KKZ initializa-
tion technique [14].

The KKZ algorithm [14] is an initialization technique for
algorithms that employ the generalized Lloyd iteration. The
KKZ initialization exploits the fact that the most distant input
vectors are more likely to belong to different classes. KKZ
orders the input so that the first two elements are the most
distant ones, the third element is the most far apart from the
previous two, and so forth. Specifically, in each iteration, the
next selected vector is the one that maximizes the minimum
distance from the already selected vectors.

By applying the KKZ algorithm, we sort the articulations
in  and rotations in  and select the first |A| articulations
and the first |R| rotations to use for training, where |A| ≤ ||
and |R| ≤ || are preselected sizes. Thus, we achieve a dense,
evenly distributed training set that contains representatives of
all the articulations in the captured sequence and of all rota-
tions in the 3D rotation group SO(3).

A significant design choice that must be made before the
use of the KKZ algorithm is the metric that is required in order
to quantify the distance of articulation or quaternion pairs.
For quaternions, we use the dot product as a similarity metric.
This can be converted to a distance metric by subtracting it
from the unit:

where �� and �� are the two compared quaternions. In order
to quantify the articulation distance, we employ the distance
function that is also used for quantitative evaluation of the
method (see Sect. 4.3). The metric quantifies the distance
between two hand poses, taking into account their 3D global
position, articulation and rotation. For two given hand poses
�� and �� , the function that measures the distance between
them is defined as

where L1 and L2 are the landmarks of hand poses �� and
�� , respectively, and n is the number of landmarks on our

(1)DQ(��, ��) = 1 − (�� ⋅ ��),

(2)D(��, ��) =
1

n

n∑

l=1

||L1l − L2l ||2

model. To quantify the distance between articulation pairs,
we fix the rotation of the two compared hand poses. It is easy
to see that, since this distance is defined as the average of
point distances, its unit of measurement is the same as these
distances, in our case millimeters (mm).

Given that the desired output of the method is a full
27-dimensional hand pose containing the global 3D posi-
tion px, py, pz of the hand, the naive approach would be to
use the RBFNs to directly regress from the depth map to
the global position. Learning this relationship is not desir-
able though, because it would require a prohibitively large
amount of training samples. Furthermore, the relationship
to be learned is rather simple, since it roughly amounts to
translating and scaling a reference depth map according to
the camera parameters.

Based on this intuition, we could use the 3D position
of the center of the bounding box � that encloses the hand
model as a rough estimation of the global position. But
computing the center � of the bounding box at the observed
hand depth is not sufficient because the anchor point of the
employed hand model will not necessarily coincide with � .
For this reason, we also compute and learn the 3D offset
� = � − � of the model’s position from the center � . We
store � instead of px, py and pz for the purposes of training
and train accordingly our RBFNs to regress for these param-
eters. Later, during evaluation, we use the regressed offset
and add it to the bounding box position of the estimated hand
depth map to recover the global hand position.

RBFNs compare the data with centers to make an estima-
tion, given their radial distance. In our case, both the data
and the centers of the network are depth maps; thus, the
employed RBFNs must quantify the comparison between
depth maps. Given that the role of these RBFNs is to quan-
tify the discrepancy between hand poses, or global hand ori-
entation, it is necessary to disentangle this comparison from
the global hand position. To do so, depth normalization must
be applied to the compared depth maps. Specifically, each
training depth map is normalized by subtracting the median
of the nonzero values and adding a fixed depth value.

All the pairs of depth images Ren(�) and the respective
hand poses � which are |A| ∗ |R| in total form our training
set. A subset of this training dataset is used to train the ini-
tialization RBFN, whereas the whole training set is used to
train the rest of the networks. Each specialized RBFN uses
a different subset of the training set that corresponds to its
specialization.

3.2 � Training the initialization RBFN

An RBFN must be trained so that it can be used as an initial-
ization step of the iterative refinement algorithm (Sect. 3.4).
We select the k first articulations and rotations from our sets
A and R that will be used to train the initialization RBFN,

	 Pattern Analysis and Applications

1 3

due to their diversity from the KKZ ordering. We create the
k2 poses � by combining the articulations and orientations
of this training set. Having the pairs of poses with their cor-
responding depth maps Ren(p) as input, we train the network
and store its parameters Cinit, �init, �init.

The selected articulations and rotations are limited to the
number k which is smaller than the |A| and |R| . Apart from
practical limitations such as memory usage, it is undesir-
able to train a single RBFN on all the available training data
because the resulting network would be very slow during
evaluation. Instead, we choose the solution of sparsely sam-
pling the full pose set to train the initialization RBFN. The
specialized RBFNs take over the task of refining its initial
estimation.

3.3 � Training specialized RBFNs

Having a single RBFN trained on every possible articula-
tion and orientation is not efficient; thus, the specialized
networks take over the task of refining an initial estimation
by learning all rotations for a fixed articulation and vice
versa. Each articulation a ∈ A and orientation r ∈ R is used
to train, respectively, |A| and |R| specialized RBFNs, so that
each RBFN is specialized in a specific articulation or in a
specific orientation.

3.3.1 � Articulation‑specialized RBFNs

Each RBFNai is trained separately, for i = 1,… , |A| . The
training input for RBFNai is a matrix containing hand
poses that have a fixed articulation ai ∈ A for all rotations
R and their corresponding depth maps. Specifically, for the
RBFNai the training input consists of input and target pairs

where �i,j is a hand pose with articulation ai and rotation rj ,
j = 1,… , |R| and Ren(�i,j) its respective depth map. The out-
put parameters of the training that are stored for use during
the estimation phase are the parameters of each of the net-
works Cai, �ai, �ai for each articulation-specialized RBFN.

3.3.2 � Rotation‑specialized RBFNs

Similarly to the previous case, we fix the rotation rj and train
the networks RBFNrj for every articulation in A. The train-
ing of every network RBFNrj is composed of the pairs of
training input and their corresponding targets

(3)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ren(�i,1)

⋮

Ren(�i,j)

⋮

Ren(�i,�R�)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

�i,1
⋮

�i,j
⋮

�i,�R�)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

The learned parameters of the networks in this case are
Crj, �rj, �rj.

3.4 � Iterative refinement algorithm (IRA)

The focus of this work is the estimation of the hand pose
having as input a crop of the hand within a depth map.
We do not focus on the detection of the hand in the image,
assuming that it is provided to the system. Therefore, we
assume the position of the bounding box that contains the
hand to be available during the estimation phase. To estimate
the global position of a hand pose � , we use the position of
the bounding box that contains the depth image of the given
hand pose. The estimation of a hand pose is derived from
an RBFN that is chosen according to an iterative refinement
scheme. This scheme uses an initial approximation of the
hand pose. Then, it iteratively finds an articulation from the
set A, and using the corresponding RBFN that was trained on
that articulation, it returns a new estimation. This estimation
is used to find a rotation from the set R. In the last step of the
iteration, the corresponding rotation-specialized RBFN is
used, computing a new estimation, that can now be provided
to the start of the iteration.

More specifically, to evaluate a single test depth
image t we start by finding a rough approximation
�̃ = RBFNinit(t;Cinit, 𝛽init, 𝜃init) which is computed using our
initialization RBFN. Subsequently, for a number of iterations
which we call epochs, we find the closest articulation ai ,
from the set A that was used for training, to the articulation
ã of the estimated pose �̃ . We input the test image t to the
RBFNai that was trained upon this closest articulation to
obtain a new estimation �̃ = RBFNai(t;Cai, 𝛽ai, 𝜃ai) . Then,
we find the orientation rj from the set R that is closest to
the orientation r̃ of the newest estimation �̃ . An update of
the estimation �̃ is performed by the output of the rotation-
specialized RBFN �̃ = RBFNrj(t;Crj, 𝛽rj, 𝜃rj) . We repeat
these steps as mentioned, starting from the beginning of the
iteration. Iteratively we look up the closest articulation and
orientation and update the estimation accordingly, for a pre-
determined number of epochs. The last RBFNrj provides the
final estimation �̃.

For estimating the position of a hand pose, we need the
vector (p̃x, p̃y, p̃z) that contains the estimated regressed off-
sets from the center of a bounding box. Given the vector �
that holds the center of the test’s image bounding box, we

(4)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ren(�1,j)

⋮

Ren(�i,j)

⋮

Ren(��A�,j)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

�1,j
⋮

�i,j
⋮

��A�,j)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Pattern Analysis and Applications	

1 3

add the two vectors in order to obtain the final global posi-
tion of the hand pose.

Algorithm 1 outlines the iterative refinement algorithm.
The function FindClosest Articulation returns the closest
articulation to its first argument, from the set of articula-
tions A by measuring the distances of the articulations to
the input articulation. The distance is computed as defined
in Eq. 2 by fixing the rotation of the two comparing hand
poses. Similarly, the function FindClosestRotation returns
the closest rotation to its first argument from the set R by
measuring rotation distances to the provided rotation. The
rotations are actually quaternions; thus, the distance between
two rotations is equivalent to the distance between two qua-
ternions. The distance between two quaternions �� and �� is
defined in Eq. 1.

Since at each iteration we search the space of our training
data to find the closest articulations and rotations, the run
time of the estimation is proportional to the size of the train-
ing dataset. Thus, for the selection of the number of epochs
we must consider that with increased training set we increase
the run time of the estimation phase.

For a visualization of the proposed pipeline, we refer
again to Fig. 1. The example illustrates the run of IRA
for 2 epochs and indicates with red arrows the closest
articulations and rotations found in sets A and R, respec-
tively. Specifically, at the beginning RBFNinit estimates
an approximation �̃ that is used to initialize the iterative
search. Using this estimation, in the first epoch the method
finds the articulation a1 that is the closest articulation in
the set A to the approximated articulation ã . RBFNa1 esti-
mates a pose �̃ . Symmetrically to the previous step, the
method proceeds to find the rotation rj that is the clos-
est rotation among the ones in the set R to the estimated

rotation r̃ . Then, RBFNrj estimates a pose �̃ . In the second
epoch, we repeat the previous actions, finding this time the
articulation ai and rotation r|R| as the closest ones, respec-
tively. Therefore, RBFNr|R| is used to estimate the final
hand pose �̃.

4 � Experimental evaluation

4.1 � Developed datasets

Training datasets For the purpose of generating a number
of synthetic training datasets, we recorded a sequence S1 of
a human hand performing a large variety of finger articula-
tions. S1 is about 2 minutes long and contains 3180 frames.

We employ the method presented in [24] to track S1 with
a large budget, yielding accurate results. The manual initiali-
zation required by this method is the only manual annotation
required in the proposed pipeline. From the implementation
of [24], we also use the module that synthesizes candidate
depth maps to generate our synthetic dataset. We refer to the
functionality of this module as Ren in Sect. 3.

After tracking S1 , we use the obtained results to create the
set  that contains 3180 articulations. By sampling densely
the quaternion space, we also create the set  using 1024
distinct rotations. We then employ the KKZ algorithm to
sort  and  so as the most diverse poses and rotations,
respectively, come first in this ordering. This allows for the
generation of datasets of various lengths that best cover the
articulation and rotation spaces for a given dataset size.
Throughout the design and training of the proposed method,
we design in this way four synthetic datasets:

–	 We combine the full  and  sets to create
3180 × 1024 = 3, 256, 320 hand poses. Using the func-
tion Ren, we also acquire the rendered depth maps of
these poses, ending up with the complete synthetic train-
ing set TC.

–	 We select the first 1024 articulations and 1024 rotations
to use as the full training dataset TF . Thus, TF consists
of 1024 × 1024 = 1, 048, 576 hand poses and their cor-
responding rendered depth maps.

–	 For training the initial RBFN ( RBFNinit ), we set the
number of chosen articulations/rotations to k = 100 as
described in Sect. 3.2 and end up with the dataset TI that
contains a total of 100 × 100 = 10, 000 hand poses.

–	 Two even smaller subsets with the first 40 rotations and
40 hand articulations are used to develop the dataset TM
of 40 × 40 = 1600 hand poses. This dataset was used to
train initialization and specialized RBFNs to fine tune the
meta-parameters of the proposed method, as outlined in
Sect. 4.2.

	 Pattern Analysis and Applications

1 3

As already outlined, the complete dataset TC is KKZ ordered,
and all the other ones are derived exploiting this order. This
implies that the four datasets above are each a subset of
its immediately larger one, i.e., the following relationship
holds: TM ⊂ TI ⊂ TF ⊂ TC.

Testing dataset We recorded a second sequence, S2
showing similar hand articulations as S1 . S2 contains 2710
frames. We tracked S2 with the method of [24] and a large
computational budget. This sequence referred later in the
text as dataset E was used to evaluate the performance of
the proposed method on real data with similar articulation
ranges to the training set TF (see Fig. 5).

4.2 � RBFN training details

We use the implementation of radial basis function networks
by McCormick [19]. RBFNs have two free parameters, the
number of radial basis functions (RBFs) also known as
centers and the shape of these functions, determined by a
parameter � . In our method, we add one more hyper-param-
eter, epochs, which is the number of iterations required to
complete the refinement of the initial pose by the iterative
refinement scheme IRA. In order to estimate the best values
for these three meta-parameters, we first trained our model
on the TM dataset as outlined in Sect. 4.1. We also created a
validation dataset that contained frames from the TC dataset
that were not included in the TF dataset.

We found that the best validation set performance was
achieved using the training samples as the centers of our
RBFNs as shown in Fig. 2. Intuitively, this means that the
best performance is achieved when memorizing the training
dataset, interpolating between its samples only for unseen
poses.

We also varied the parameter � over a large range
of values, spanning several orders of magnitude. We
found that the best validation set accuracy was achieved
for � = 10, 095 . Figure 3 presents the results of this
experiment.

Finally, the number of iterations for IRA was set to 6,
achieving the best trade-off between estimation time and
accuracy. Even though the best performance is achieved
for 8 epochs as presented in Fig. 4, we prefer 6 epochs as
the estimation time increases for every additional epoch
with only a slight increase in performance. This is clearly
shown in Fig. 4 since the increase in run time is linear
with the number of epochs (about 150ms per epoch in
our implementation), while the performance improvement
after 6 epochs is disproportionately smaller.

Fig. 2   Validating RBFNs for different number of centers plus a model
trained on all training samples

Fig. 3   Validating RBFNs for various � values

Fig. 4   Validating RBFNs for various numbers of epochs

Pattern Analysis and Applications	

1 3

4.3 � Quantitative evaluation

In order to evaluate quantitatively the performance of our
method, we reuse the error metric over hand poses in Eq. 2.
We adopt the common approach of averaging the distance
of multiple landmark points between two hand poses. In the
results below, the distance is always in mm.

In a first experiment, we applied our method to the dataset
E. Figure 5 illustrates the results of this experiment. The
graph plots the percentage of poses that have an average
error under a certain threshold. We compare our proposed
method to that of using only the initialization RBFN. Evi-
dently, IRA improves significantly the initial estimation.

We also evaluate our method on the publicly available
MSRA hands dataset presented in [31]. MSRA consists of
17 different hand gestures performed by nine different sub-
jects. These gestures are chosen from the American Sign
Language, spanning as much as possible the finger articula-
tion space. Each gesture is recorded for 500 frames, for a
total of 76, 500 frames. The provided depth maps are anno-
tated with 3D joint locations.

Table 1 presents average distance errors for four different
methods that were tested on the MSRA dataset along with
our proposed method. The four methods were trained on
eight subjects of the MSRA dataset and tested on the held-
out subject.

On the contrary, in our method, we tested the same
RBFNs on all nine subjects, since our method is trained on
the synthetic dataset TF . This means that our approach has
never seen any frame of the MSRA dataset, or any other
real-world dataset for that matter. This is clearly disadvan-
tageous to our method: As shown by the work by Supancic
et al. [32], Table 5, cross-dataset generalization is far from
being solved. It should be also stressed that there is no other
way to compare these methods on the MSRA dataset, since
our method can only be trained on a dataset that has a spe-
cific structure, as outlined in Sect. 4.1. Under these circum-
stances, we observe that our method has the largest error
compared to the other methods. Even though the error we
obtain is higher than the other approaches, it is satisfactory
as seen by the qualitative results in Sect. 4.4, illustrating that
our method is capable of generalization.

To fully understand the behavior of our method com-
pared to a state-of-the-art deep learning method, we con-
duct another experiment. We used the implementation of
DeepPrior++ as presented in [21]. In order to achieve a fair
comparison, we trained that network on, TI , i.e., the synthetic
dataset that was used to train RBFNinit . It should be noted
that, due to memory and computational time limitations, it
would not be possible to train DeepPrior++ on TF . Further-
more, training our method on the MSRA dataset (or any
other real-world dataset for that matter) is not possible, given
the specific dataset structure that is required by our method.
For performance comparison, we evaluated the hand poses
from the MSRA dataset for all the subjects. Figure 6 shows
the percentage of hand poses having average error less than a
threshold, for the cases: (a) our full method, (b) for RBFNinit
only, and (c) for DeepPrior++. Compared with the first
experiment, we can observe that our method performs worse
in MSRA than in E. This is attributed to the differences on
the hand shapes and sizes as well as the varying depth ranges
in the two datasets. Still, the performance is very appeal-
ing given the fact that the method achieves a generalization
from synthetic to real data. The results also demonstrate that

Table 1   Comparison of our whole method with other methods from
the literature on the MSRA dataset

Method Median distance error

Wan et al. [38] 25 ± 2 mm
Sun et al. [31] 28 ± 2 mm
Wan et al. [37] 32 ± 2 mm
Ge et al. [12] 20 ± 2 mm
Ours 48.93 mm

Fig. 5   Results on the test sequence E. Percentage of hand poses within an error threshold, plotted as a function of this threshold. The two differ-
ent lines show the performance of the whole method compared to the initialization RBFN

	 Pattern Analysis and Applications

1 3

although DeepPrior++ can better generalize from synthetic
to real data compared to the initial RBFN, the performance
of RBFNinit is still quite close. Even more importantly, the
complete, proposed method ( RBFNinit + IRA ) outperforms
DeepPrior++.

4.4 � Qualitative evaluation

Figure 7 shows representative frames of estimated hand
poses on the captured test sequence with their respective
manually annotated ground truths. In Fig. 8, we present
images of estimated hand poses on the MSRA dataset. On

left is shown the test depth image with the annotated ground
truth and on right the estimated pose.

We observe that the estimations are quite accurate, and
the method manages to generalize well on E and on MSRA,
despite the increased average error. We may notice that for
subjects with different hand shape variations (such as Sub-
ject 5), the estimations are slightly worse from other sub-
jects, given the fact that our method is trained using a single
hand shape.

In Fig. 9, we present some fail cases of hand pose esti-
mations. We observe how our method tries to fit regressed
hand poses to the input depth map by predicting wrong
finger articulations that project to similar depth maps to

Fig. 6   Results on MSRA hands dataset. Percentage of hand poses
within a threshold plotted as a function of this threshold. The three
different curves show the performance of the whole method com-

pared to the initialization RBFN and DeepPrior++. The latter was
trained on the same training set as the initialization RBFN (i.e., on TI)

Fig. 7   Qualitative results on
captured test sequence S2 . Left
is the RGB test image, middle is
the manually annotated ground
truth, and right is the final
estimation

Pattern Analysis and Applications	

1 3

the input. Other cases show how the method may fail on
articulation estimations more often than on rotation esti-
mations, as the rotation is close to the desired one but the
articulation is the one that seemingly increases the error.
Furthermore, other cases show that for difficult poses with
few distinctive features (as in the case of a closed palm)
the method fails to estimate accurately the rotation of the
hand.

4.5 � Computational performance

All the experiments presented above were conducted using
a computer equipped with an Intel Core i7-4790 CPU at
3.60GHz × 8 and 16 GB of RAM. The whole training on TF
takes about 3 days, while the estimation takes, on average,
about 1 second per test image. It should be stressed, how-
ever, that the evaluation of an RBF takes on average less
than 1.6 milliseconds using a single core of the CPU. In our

Fig. 8   Qualitative results on
MSRA dataset: The left part
of each image is the test depth
image with the annotated
ground truth. The right part of
each image is the final estima-
tion

	 Pattern Analysis and Applications

1 3

implementation, the real-world performance of the method
is limited by input/output (I/O) operations. Since we have
precomputed thousands of RBF networks at training time,
it is impossible to have them all available in main memory.
Therefore, whenever the iterative scheme needs to use a
new RBF network, it is loaded from disk, slowing down
the process. A smart caching scheme can significantly help,
especially in the case of tracking a hand that moves rather
smoothly. In such a case, the temporal continuity assump-
tion will directly translate to fewer cache misses, effectively
eliminating I/O operations time. Alternatively, one can just
resort to adding enough RAM to hold all the RBFNs, 64 GB
for the case of the RBFNs resulting from TF.

5 � Summary and discussion

We presented a method for single-shot hand pose estima-
tion using a depth map as input. We created a large syn-
thetic dataset and trained multiple RBFNs on it. We used
an initial RBFN to compute a rough estimation of hand
pose and articulation given a depth image. Then, with the
use of specialized RBFNs, we managed to iteratively refine
this approximation arriving to a final estimation. The use
of RBFNs allows our method to make use of a large syn-
thetic dataset. Despite the fact that the method is trained
only on this synthetic dataset, we experimentally verified
that it generalizes well to real-world data. Moreover, we
validated our method in order to tune the hyper-parameters
of the proposed model and we experimentally identified
optimal values for all the hyper-parameters of the proposed

method. We tested our method on two different testing
datasets. The first one is a sequence we captured, and the
second is a publicly available dataset that is commonly
used to assess 3D hand pose estimation methods. We com-
pared quantitatively our method with a recent state-of-the-
art deep learning method from the relevant literature. To
further illustrate the performance of our method, we also
presented qualitative results. The obtained results demon-
strate that RBFNs can generalize quite well when learning
synthetic data. This is in contrast to most state-of-the-art
methods that cannot even achieve cross-dataset generali-
zation [32]. A RBFN does not search for patterns in local
partitions of the data. Instead, it associates the input and
output data according to the learned distances from its
centers. A standalone RBFN might not perform satisfac-
torily. With the refinement of this initial suggestion, mul-
tiple specialized RBFNs can improve the final estimation,
approaching the performance of state-of-the-art methods.

Future work includes the investigation of the effects of
parallax distortion and the generalization across human
hand sizes and shapes. Also, we may exploit the ability
of the proposed method to incorporate rotation or pose
constraints by applying it to the egocentric observation
scenario as well as on the scenario of detecting a small
vocabulary of predefined gestures.

Acknowledgements  This work was partially supported by the EU pro-
ject Co4Robots (H2020-ICT-2016-1-731869). Also co-financed by the
European Union and Greek national funds through the Operational Pro-
gram Competitiveness, Entrepreneurship and Innovation, under the call
RESEARCH – CREATE - INNOVATE (project code:T1EDK-01299
- HealthSign). The contribution of Paschalis Panteleris member of the
CVRL/FORTH is gratefully acknowledged.

Fig. 9   Fail cases for both data-
sets (two first rows: E, bottom
row: MSRA)

Pattern Analysis and Applications	

1 3

References

	 1.	 Angeline PJ (1998) Evolutionary optimization versus particle
swarm optimization: philosophy and performance differences.
Lecture Notes in Computer Science: Evolutionary Programming
VII, 1447:601–610, ISSN: 16113349. https​://doi.org/10.1007/
BFb00​40811​

	 2.	 Athitsos V, Sclaroff S (2003) Estimating 3d hand pose from a
cluttered image. In: CVPR. IEEE Computer Society. Los Alami-
tos, vol 2, p 432, http://doi.ieeec​omput​ersoc​iety.org/10.1109/
CVPR.2003.12115​00

	 3.	 Bellon R, Choi Y, Ekker N, Lepetit V, Mike OL, Sonntag D, Tősér
Z, Yoo K, Lőrincz A (2016) Model based augmentation and test-
ing of an annotated hand pose dataset. In: Joint German/Austrian
conference on artificial intelligence (Künstliche Intelligenz),
Springer, pp 17–29

	 4.	 Bray M, Koller-Meier E, Van Gool L (2004) Smart particle fil-
tering for 3d hand tracking. IEEE int’l conference on automatic
face and gesture recognition, pp 675–680, https​://doi.org/10.1109/
AFGR.2004.13016​12. URL http://ieeex​plore​.ieee.org/lpdoc​s/
epic0​3/wrapp​er.htm?arnum​ber=13016​12

	 5.	 Broomhead DS, Lowe D (1988) Radial basis functions, multi-
variable functional interpolation and adaptive networks. Technical
report, Royal Signals and Radar Establishment Malvern(United
Kingdom)

	 6.	 de Campos TE, Murray DW (2006) Regression-based Hand Pose
Estimation from Multiple Cameras. In: 2006 IEEE computer soci-
ety conference on computer vision and pattern recognition—Vol-
ume 1 (CVPR’06). IEEE, vol 1, pp 782–789. ISBN: 0-7695-2597-
0. https​://doi.org/10.1109/CVPR.2006.252. URL http://ieeex​plore​
.ieee.org/lpdoc​s/epic0​3/wrapp​er.htm?arnum​ber=16408​33

	 7.	 de La Gorce M, Fleet DJ, Paragios N (2011) Model-based 3d hand
pose estimation from monocular video. IEEE Trans PAMI, pp
1–15, ISSN 1939-3539. https​://doi.org/10.1109/TPAMI​.2011.33.
URL http://www.ncbi.nlm.nih.gov/pubme​d/21339​527http://www.
compu​ter.org/porta​l/web/csdl/doi/10.1109/TPAMI​.2011.33

	 8.	 Eberhart R, Kennedy J (1995) A new optimizer using particle
swarm theory. In: Proceedings of the sixth international sympo-
sium on micro machine and human science, 1995. MHS’95. IEEE,
pp 39–43

	 9.	 Erol A, Bebis G, Nicolescu M, Boyle RD, Twombly X (2007)
Vision-based hand pose estimation: a review. CVIU, 108(1-2):52–
73. URL http://linki​nghub​.elsev​ier.com/retri​eve/pii/S1077​31420​
60022​81

	10.	 Fleishman S, Kliger M, Lerner A, Kutliroff G (2015) ICPIK:
inverse kinematics based articulated-ICP. In: Computer vision
and pattern recognition workshops, vol 2015, pp 28–35. ISBN:
9781467367592. https​://doi.org/10.1109/CVPRW​.2015.73013​45

	11.	 Ge L, Liang H, Yuan J, Thalmann D (2016) Robust 3d hand pose
estimation in single depth images: from single-view cnn to multi-
view cnns. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 3593–3601

	12.	 Ge L, Liang H, Yuan J, Thalmann D (2017) 3D convolutional
neural networks for efficient and robust hand pose estimation from
single depth images. In: Proceedings IEEE CVPR, pp 1991–2000.
https​://doi.org/10.1109/CVPR.2017.602

	13.	 Heap T, Hogg D (1996) Towards 3D hand tracking using a deform-
able model. In: IEEE, vol 9, pp 140–145. ISBN: 0818677139

	14.	 Katsavounidis I, Jay Kuo C-C, Zhang Z (1994) A new initializa-
tion technique for generalized Lloyd iteration. IEEE Signal Pro-
cess Lett 1:144–146. https​://doi.org/10.1109/97.32984​4

	15.	 Le HNT, Quach KG, Zhu C, Duong CN, Luu K, Savvides M
(2017) Robust hand detection and classification in vehicles and
in the wild. In: IEEE conference on computer vision and pattern
recognition workshops (CVPRW), 2017. IEEE, pp 1203–1210

	16.	 Li P, Ling H, Li X, Liao C (2015) 3D hand pose estimation using
randomized decision forest with segmentation index points. In:
Proceedings of the IEEE international conference on computer
vision, vol 2015 Inter, pp 819–827. ISBN: 9781467383912.
https​://doi.org/10.1109/ICCV.2015.100

	17.	 Makris A, Kyriazis N, Argyros AA (2015) Hierarchical particle
filtering for 3D hand tracking. In: IEEE conference on computer
vision and pattern recognition workshops (CVPRW), 2015. pp
8–17. ISBN: 9781467367592. https​://doi.org/10.1109/CVPRW​
.2015.73013​43. URL http://ieeex​plore​.ieee.org/xpl/artic​leDet​
ails.jsp?arnum​ber=73013​43

	18.	 Makris A, Argyros A (2015) Model-based 3D hand track-
ing with on-line shape adaptation. In: British machine vision
conference, pp 77.1–77.12. ISBN: 1-901725-53-7. https​://doi.
org/10.5244/C.29.77. URL http://www.bmva.org/bmvc/2015/
paper​s/paper​077/index​.html

	19.	 McCormick C (2013) Radial basis function network (rbfn) tuto-
rial. http://mccor​mickm​l.com/2013/08/15/radia​l-basis​-funct​ion-
netwo​rk-rbfn-tutor​ial

	20.	 Mittal A, Zisserman A, Torr PHS (2011) Hand detection using
multiple proposals. In: BMVC, pp 1–11

	21.	 Oberweger M, Lepetit V (2017) DeepPrior++: improving
fast and accurate 3D hand pose estimation. In: Proceedings of
the IEEE international conference on computer vision work-
shop, vol 840. https​://doi.org/10.1109/ICCVW​.2017.75. arXiv​
:1708.08325​

	22.	 Oberweger M, Wohlhart P, Lepetit V (2015a) Hands deep in
deep learning for hand pose estimation. In: Computer vision
winter workshop, pp 1–10. arXiv​:1502.06807​

	23.	 Oberweger M, Wohlhart P, Lepetit V (2015b) Training a feed-
back loop for hand pose estimation. In: Proceedings of the IEEE
international conference on computer vision, pp 3316–3324

	24.	 Oikonomidis I, Kyriazis N, Argyros AA (2011a) Efficient
model-based 3D tracking of hand articulations using kinect.
In: BMVC, Dundee

	25.	 Oikonomidis I, Kyriazis N, Argyros AA (2011b) Full DOF
tracking of a hand interacting with an object by modeling occlu-
sions and physical constraints. In: ICCV. IEEE, pp 2088–2095

	26.	 Panteleris P, Argyros A (2017) Back to RGB: 3D tracking of
hands and hand-object interactions based on short-baseline
stereo. In: Proceedings of the IEEE international confer-
ence on computer vision workshop, pp 575–584. https​://doi.
org/10.1109/ICCVW​.2017.74

	27.	 Qian C, Sun X, Wei Y, Tang X, Sun J (2014) Realtime and
robust hand tracking from depth. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp
1106–1113

	28.	 Rehg J, Kanade T (1994a) Visual tracking of high dof articulated
structures: an application to human hand tracking. ECCV, vol
35–46. URL http://www.sprin​gerli​nk.com/index​/MK50G​5121V​
7N623​6.pdf

	29.	 Rehg JM, Kanade T (1994b) Visual tracking of high dof articu-
lated structures: an application to human hand tracking. In: ECCV.
Springer

	30.	 Romero J, Kjellstrom H, Kragic D (2009) Monocular real-time 3d
articulated hand pose estimation. In: IEEE-RAS int’l conference
on humanoid robots. https​://doi.org/10.1109/ICHR.2009.53795​96.
URLhttp://ieeex​plore​.ieee.org/lpdoc​s/epic0​3/wrapp​er.htm?arnum​
ber=53795​96

	31.	 Sun X, Wei Y, Liang S, Tang X, Sun J (2015) Cascaded hand pose
regression. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 824–832

	32.	 Supancic JS, Rogez G, Yang Y, Shotton J, Ramanan D (2015)
Depth-based hand pose estimation: data, methods, and challenges.
In: Proceedings of the IEEE international conference on computer
vision, pp 1868–1876

https://doi.org/10.1007/BFb0040811
https://doi.org/10.1007/BFb0040811
http://doi.ieeecomputersociety.org/10.1109/CVPR.2003.1211500
http://doi.ieeecomputersociety.org/10.1109/CVPR.2003.1211500
https://doi.org/10.1109/AFGR.2004.1301612
https://doi.org/10.1109/AFGR.2004.1301612
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1301612
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1301612
https://doi.org/10.1109/CVPR.2006.252
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1640833
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1640833
https://doi.org/10.1109/TPAMI.2011.33
http://www.ncbi.nlm.nih.gov/pubmed/21339527
http://www.computer.org/portal/web/csdl/doi/10.1109/TPAMI.2011.33
http://www.computer.org/portal/web/csdl/doi/10.1109/TPAMI.2011.33
http://linkinghub.elsevier.com/retrieve/pii/S1077314206002281
http://linkinghub.elsevier.com/retrieve/pii/S1077314206002281
https://doi.org/10.1109/CVPRW.2015.7301345
https://doi.org/10.1109/CVPR.2017.602
https://doi.org/10.1109/97.329844
https://doi.org/10.1109/ICCV.2015.100
https://doi.org/10.1109/CVPRW.2015.7301343
https://doi.org/10.1109/CVPRW.2015.7301343
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7301343
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7301343
https://doi.org/10.5244/C.29.77
https://doi.org/10.5244/C.29.77
http://www.bmva.org/bmvc/2015/papers/paper077/index.html
http://www.bmva.org/bmvc/2015/papers/paper077/index.html
http://mccormickml.com/2013/08/15/radial-basis-function-network-rbfn-tutorial
http://mccormickml.com/2013/08/15/radial-basis-function-network-rbfn-tutorial
https://doi.org/10.1109/ICCVW.2017.75
http://arxiv.org/abs/1708.08325
http://arxiv.org/abs/1708.08325
http://arxiv.org/abs/1502.06807
https://doi.org/10.1109/ICCVW.2017.74
https://doi.org/10.1109/ICCVW.2017.74
http://www.springerlink.com/index/MK50G5121V7N6236.pdf
http://www.springerlink.com/index/MK50G5121V7N6236.pdf
https://doi.org/10.1109/ICHR.2009.5379596
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5379596
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5379596

	 Pattern Analysis and Applications

1 3

	33.	 Tagliasacchi A, Schröder M, Tkach A, Bouaziz S, Botsch M,
Pauly M (2015) Robust articulated-ICP for real-time hand track-
ing. In: Computer graphics forum

	34.	 Tang D, Chang HJ, Tejani A, Kim T-K (2014) Latent regression
forest: structured estimation of 3d articulated hand posture. In:
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp 3786–3793

	35.	 Tipping ME (2001) Sparse Bayesian learning and the relevance
vector machine. J Mach Learn Res 1(Jun):211–244

	36.	 Tompson J, Stein M, Lecun Y, Perlin K (2014) Real-time continu-
ous pose recovery of human hands using convolutional networks.
ACM Trans Graph 33:169

	37.	 Wan C, Yao A, Van Gool L (2016) Direction matters: hand pose
estimation from local surface normals. In: European conference
on computer vision, pp 554–569, Springer. arXiv​:1604.02657​

	38.	 Wan C, Probst T, Van Gool L, Yao A (2017) Crossing nets: com-
bining GANs and VAEs with a shared latent space for hand pose

estimation. In: CVPR. https​://doi.org/10.1109/CVPR.2017.132.
arXiv​:1702.03431​

	39.	 Wang RY, Popović J (2009) Real-time hand-tracking with a color
glove. ACM Trans Graph 28(3):1. ISSN: 07300301. https​://doi.
org/10.1145/15313​26.15313​69. URL http://porta​l.acm.org/citat​
ion.cfm?doid=15313​26.15313​69

	40.	 Zhang J, Jiao J, Chen M, Qu L, Xu X, Yang Q (2016) 3D hand
pose tracking and estimation using stereo matching. arXiv​
:1610.07214​

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1604.02657
https://doi.org/10.1109/CVPR.2017.132
http://arxiv.org/abs/1702.03431
https://doi.org/10.1145/1531326.1531369
https://doi.org/10.1145/1531326.1531369
http://portal.acm.org/citation.cfm?doid=1531326.1531369
http://portal.acm.org/citation.cfm?doid=1531326.1531369
http://arxiv.org/abs/1610.07214
http://arxiv.org/abs/1610.07214

	Single-shot 3D hand pose estimation using radial basis function networks trained on synthetic data
	Abstract
	1 Introduction
	2 Related work
	2.1 Generative methods
	2.2 Discriminative methods
	2.3 Relation to the proposed approach

	3 Method
	3.1 Training preparation
	3.2 Training the initialization RBFN
	3.3 Training specialized RBFNs
	3.3.1 Articulation-specialized RBFNs
	3.3.2 Rotation-specialized RBFNs

	3.4 Iterative refinement algorithm (IRA)

	4 Experimental evaluation
	4.1 Developed datasets
	4.2 RBFN training details
	4.3 Quantitative evaluation
	4.4 Qualitative evaluation
	4.5 Computational performance

	5 Summary and discussion
	Acknowledgements
	References

