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Abstract

We present a novel approach for 2D hand keypoint
localization from regular color input. The proposed ap-
proach relies on an appropriately designed Convolu-
tional Neural Network (CNN) that computes a set of
heatmaps, one per hand keypoint of interest. Exten-
sive experiments with the proposed method compare it
against state of the art approaches and demonstrate
its accuracy and computational performance on stan-
dard, publicly available datasets. The obtained re-
sults demonstrate that the proposed method matches or
outperforms the competing methods in accuracy, but
clearly outperforms them in computational efficiency,
making it a suitable building block for applications that
require hand keypoint estimation on mobile devices.

1 Introduction

In this work we are interested in hand 2D key-
point localization using regular RGB input. Specif-
ically, given a conventional RGB image depicting a
hand, our goal is to localize on it a set of predefined
keypoints/landmarks, such as the centroid of the hand
wrist and the finger joints.

The high interest for human hands derives from the
crucial role they play in the majority of human activ-
ities. The human hands can be regarded as a general-
purpose interaction tool due to their dexterous func-
tionality in communication and manipulation. Hand
landmark localization is therefore useful in many di-
verse cases and scenarios. As a standalone module,
it can support Augmented- or Virtual-Reality applica-
tions, enabling natural interaction with the computa-
tional system. Patient assessment and rehabilitation
is another area where hand keypoint localization can
be immediately useful. Apart from being directly used
in practical applications, hand keypoint localization is
crucial for systems that tackle more complex problems
such as the estimation of the 3D pose of the observed
hand. Most recent approaches on 3D hand pose esti-
mation based on monocular RGB input incorporate a
separate step [33, 18] or at least an intermediate target
of the employed neural network [9, 1] to the task of 2D
keypoint localization.

Because of its great interest and importance in the
context of numerous applications, the problem of 2D
keypoints localization has attracted a lot of research

Figure 1. Given an RGB image, the proposed
method localizes 2D keypoints of the human
hand and recovers a 2D skeletal hand model.
Compared to state of the art methods, this is
achieved with equivalent or better localization ac-
curacy and with much lower computational re-
quirements. Thus, effective hand keypoint local-
ization becomes possible on mobile devices, en-
abling the development of several applications.

interest. However, it is still considered a challeng-
ing problem that remains unsolved in its full gener-
ality. Several factors such as the hand’s flexibility, self-
occlusions, occlusions due to hand-object interaction,
varying lighting conditions, appearance variability due
to jewelry and gloves, complex/cluttered backgrounds,
etc, contribute to the difficulty of the task. All these
factors coalesce, hindering the task of accurately local-
izing the landmarks of interest on the observed hand.

In this work, we present an approach for 2D hand
keypoint localization, based on a lightweight Convo-
lutional Neural Network (CNN). Towards this end,
we propose a modular approach, inspired by a re-
cent successful approach on the related problem of
3D human body pose estimation from monocular in-
put [12]. Targeting high performance even for mobile
devices [8], we employ a lightweight alternative, Mo-
bileNetV2 [21], instead of ResNet [7], as employed by
Mehta et al. [12]. Depending on the dataset, the pro-
posed method matches or outperforms the accuracy of
state-of-the-art approaches on this problem. More im-
portantly, the proposed network achieves the fastest ex-
ecution time among all competitive approaches. Over-
all, it achieves real-time performance even on mobile
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devices. In summary, our contribution is as follows:
• We design a CNN that achieves an accuracy that

is similar or better to that of the state-of-the-art
2D detectors.
• The method is based on a lightweight CNN archi-

tecture and has significantly less computational re-
quirements than competing approaches. As such,
it opens new opportunities for building hand mon-
itoring applications on mobile devices.
• We compile a new hand dataset that can be

used for 2D keypoints localization. This dataset
is the combination of existing, publicly available
datasets. We show that training on this unified
dataset improves the generalization capabilities of
the resulting network.

2 Related Work

The problems of detecting and localizing human
bodies and body parts, including body joints, hand
joints, and human facial landmarks are of significant
interest to the computer vision community and they
have been actively researched for decades [13, 32, 6].
Considered unsolved in their full generality, they are
currently actively researched. Fueled in part by the
success of deep neural networks, this effort continues
to yield important advancements [2, 10, 9, 20].

CNNs have been successfully applied to 2D body
pose estimation [28, 2] and 2D human hand pose esti-
mation [22]. This is formulated as a pixel-wise classi-
fication of each pixel being the location of a joint. As
such, an important line of work in pose estimation cre-
ates networks that detect joints in 2D. Through pixel-
wise classification, joint detection can exploit local pat-
terns more explicitly than holistic regression, helping
the network to learn better feature maps.

In this paper we build upon this line of work, propos-
ing a computationally efficient 2D hand keypoint detec-
tor that matches or outperforms the accuracy of com-
peting approaches. Our method is closely related to
the VNect work by Mehta et al. [12], borrowing and
adapting the network architecture. Two more works
that are closely related to our work are the one by Wei
et al. [28] and by Simon et al. [22]. In contrast to all of
these works, our approach targets low computational
power devices, while maintaining or exceeding estima-
tion accuracy. Further differences include the compu-
tation of 2D landmarks, in contrast to 3D ones [12],
and targeting the human hand in contrast to the hu-
man body [12, 28]. Currently, state-of-the-art meth-
ods on hand keypoint localization include the works
by Simon et al. [22], Iqbal et al. [9], Zimmermann and
Brox [33], and Dibra et al. [5]. Quantitative evaluation
experiments on our method are presented in Section 5,
comparing it against most of these approaches.

During the last decade, a significant amount of re-
search effort has been devoted to develop methods for
hand pose estimation [17, 24, 29]. Drawing parallels

from the recent advancements on the related field of
human body pose estimation [12], the effort on hand
pose estimation has recently shifted from depth input,
used throughout most of the past decade [29], to regu-
lar color input [33, 18, 9, 1]. It should be stressed that
hand keypoint localization is an important part of such
hand pose estimation techniques.

Most recent methods on hand pose estimation can
be categorized into three groups, termed generative,
discriminative [23] and hybrid. Discriminative meth-
ods [24, 16, 9] typically learn a mapping from the visual
input to the target hand pose space in a large offline
step. During runtime this mapping is applied to the in-
put, estimating the hand pose. Common ways to learn
the mapping include the use of Random Forests [11]
and more recently CNNs [16]. Our method fits in this
category of approaches. Generative methods [17, 27,
25] use a hand model to synthesize image features.
These features are then compared to the observed vi-
sual input, quantifying the agreement between a candi-
date hand pose and the visual input. An optimization
algorithm is then employed to search for the hand pose
that best matches the visual input. Both black-box [17]
and gradient-based [25] optimization algorithms have
been used for this task. Finally, hybrid methods incor-
porate elements and techniques from both discrimina-
tive and generative ones.

3 Localizing Hand Keypoints

The proposed method for hand keypoint localization
is based on a convolutional neural network (CNN) that
accepts as input a color image of a human hand and
outputs a set of likelihood maps, or heat maps, one
per landmark of interest. A post processing step is
then employed to compute the final location of each
landmark of interest. We target a total of K = 21
hand keypoints that include the hand wrist, 5×3 = 15
finger joints, and 5 fingertips.

3.1 Network Architecture

The proposed CNN architecture is inspired by work
on human body landmark localization [15, 12]. The
proposed network exhibits a progressive reduction of
the input spatial resolution, followed by a few steps
of upsampling. This commonly used meta-architecture
follows the encoder-decoder paradigm, “encoding” the
input spatial resolution to a lower intermediate repre-
sentation before “decoding” it by spatially upsampling.

For the encoding part, we employ a neural network
that is pre-trained on the ImageNet dataset [4]. Given
that we are aiming for computational efficiency, we use
an adaptation of the MobileNetV2 [21]. More specifi-
cally, we use the structure of MobileNetV2 up to block
13 as is, without modifications. The 14th block is then
modified by removing the stride, to disable the down-
sampling that is normally performed in that block.
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Figure 2. The network architecture of the proposed approach. The input hand image (left) first passes
through a modified MobileNetV2 [21] (blocks 1 to 13 and then 14 to 17 without the subsampling at the 14th
block). Next, inspired by VNect [12], a few layers compute the output heatmaps (right). See text for details.

Then, blocks 15 through 17 are again used without
any modifications. For the decoding part we adapt the
respective part proposed by Mehta et al. [12]. In that
work the target is 3D points, which is not the case in
our work. Instead of this, we only output heatmaps
that target 2D keypoints. Another difference is the
use of less layers than their respective last part. Fi-
nally, following the example of MobileNet, we replace
conventional convolutions by depth-wise convolutions,
speeding up computations. An illustration of the pro-
posed network architecture is presented in Figure 2.

3.2 Network Training

The input of the network is regular color images
while the output is K + 1 heatmaps, one for each
hand landmark, plus one for the background. This
is common practice in the category of approaches us-
ing heatmaps [28, 2]. We train the network on images
containing only one hand. For the k-th hand keypoint,
k ∈ {1 . . .K}, its corresponding ground truth heatmap
is a 2D Gaussian, where the pixel intensity represents
the likelihood of the landmark occurring in that spatial
location. The Gaussian is centered at the correspond-
ing feature point of the observed hand. More formally,
the heatmap H of the keypoint k located at the 2D
point (kx, ky) has for each point p in the image spatial
domain P with coordinates (px, py) the value:

Hk(p) = e−
(px−kx)2+(py−ky)2

2σ2 , (1)

where σ is a predetermined standard deviation con-
trolling the shape of the Gaussian. The background
heatmap Hbg is computed as the inverse mask of the
per-pixel maximum over the keypoint heatmaps, that
is:

Hbg(p) = 1− max
k∈{1...K}

(Hk(p)). (2)

3.3 Landmark Localization

Given an input image, the trained network computes
a set of K + 1 heatmaps. By applying spatial soft-
max normalization to each of the K heatmaps that
correspond to landmarks (excluding the background
heatmap), we obtain a probability map, where the
probability at each point denotes how likely it is that
the specific keypoint is located at this position. In or-
der to obtain the position of a keypoint k from a com-
puted probability map, we select the point k having
the maximum likelihood as in [28, 15, 26]:

k = argmax
p∈P

H(p). (3)

If the probability is lower than a predetermined thresh-
old, we select among the peaks having the highest prob-
abilities, the one located nearest to the keypoints that
have been found with high confidence.

4 Implementation

We implemented our models using the Keras [3] deep
learning framework. For training, we used only right
hands. During evaluation we mirror images containing
a left hand [22] before passing them to the network.

The training images are cropped around the corre-
sponding hand center. We train for 200 epochs, with
batch size of 32 using the ADADELTA optimizer [30].
We use data augmentation in order to obtain a greater
variety of training samples. Namely, the images are ro-
tated from −30◦ to 30◦, translated up to 30 pixels and
scaled by a factor ranging from 0.8 to 1.5.

5 Experimental Evaluation

We present training and evaluation details of our ap-
proach, followed by experiments that quantify the es-
timation accuracy and the computational performance



Table 1. Ablation study on the CMU dataset.
Architecture/ AUC ↑ Mean ↓ Median ↓
Training set EPE (px) EPE (px)
MobileNetv2 /
CMU (112x112) 0.917 11.75 7.34
CMU (224x224) 0.919 10.88 6.95
CMU+RHD 0.901 13.60 9.11
CMU+RHD+SHP 0.924 10.40 6.40
ResNet/CMU 0.917 11.14 6.54

of the proposed method. In all fronts, we compare the
achieved performance against several state-of-the-art
methods for 2D keypoint localization, on the basis of
four different publicly available datasets.

Training and Test Datasets: We conduct experi-
ments using the following publicly available datasets:
• The CMU dataset [22]: Consists of the MPII

Human Pose dataset and the New Zealand sign
Language dataset (MPII + NZSL) [22] totalling
1,912 training images and 846 images for evalua-
tion. Additionally it also contains 14,817 real and
14,261 synthetic images that are used by the au-
thors for their multi-view bootstrapping method.
• The Rendered Hand Pose (RHD)
dataset [33]: Consists of 41, 258 training
and 2, 728 evaluation synthetic images.
• The Stereo Hand Pose (SHP) dataset [31]:

Consists of 18, 000 stereo images derived from 6
video sequences each of which contains a single
person’s left hand with different background and
lighting for each sequence. We use this dataset
only for training.
• The Dexter+Object (D+O) dataset [23]:

Consists of 3, 145 captured frames from 6 video
sequences each of which contains a single person
manipulating an object with his left hand. We use
this dataset only for testing.
• The Tzionas dataset [27]: Consists of 720 cap-

tured frames from 11 different video sequences
each of which contains a person’s one or two hands
interacting with each other and/or with an object.
We use this dataset only for testing.

Evaluation Metrics: Three different metrics are
commonly used throughout the relevant literature to
assess quantitatively the performance of keypoint esti-
mation methods: (1) The Percentage of Correct Key-
points - PCK [9] that plots the percentage of keypoints
below a distance threshold as a function of this thresh-
old, (2) the Area Under Curve - AUC that quantifies
the performance of a method by measuring the area un-
der the PCK curve (assumes values in the range [0..1],
larger AUC corresponds to better performance) and
(3) the average End Point Error - EPE that measures
the distance in pixels between the detected joint posi-
tions and the corresponding ground truth locations.

In order to compare with state-of-the-art detectors,

we adopt a common evaluation protocol for all of
them. In particular, for RHD, the root keypoints of
the ground-truth and estimated poses are aligned be-
fore calculating the metrics. For the CMU dataset,
we report the head-normalized PCK (PCKh), simi-
larly to [22] and [9]. For RHD and D+O we report
the PCK curve thresholded at the 30 pixels, similarly
to [33] and [9]. For Tzionas, we report the PCK curve
thresholded at 15 pixels.

Ablation Study: In order to assess the impact of
different design choices upon the performance of our
solution, we conduct a number of experiments under a
variety of settings. As a target dataset in this study we
opt for CMU, because we consider it the most challeng-
ing dataset due to the wide variety of scenes it contains.
The results of this study are presented in Table 1.
First, we examine the impact that additional train-
ing data has on the performance of our network. We
train networks with the (a) CMU, (b) CMU+RHD and
(c) CMH+RHD+SHP training sets. Next, we examine
whether using a more complex backbone (ResNet-50)
yields significantly better accuracy. Finally, we assess
the impact of different crop sizes for our training im-
ages. The ablation study shows that our architecture
using the Mobilenet V2 backbone trained using a crop
size of 224x224 yields the best trade-off for accuracy
and performance. Unless otherwise noted, we use this
network configuration with different training sets.

Comparison to state-of-the-art: We test our
method on the CMU, D+O, RHD and Tzionas datasets
in comparison to state of the art methods that have re-
ported results on these datasets. For a fair comparison,
all methods compared on a certain dataset are trained
on the same training data. Specifically, for CMU and
Tzionas we use the CMU training set, whereas for the
D+O and RHD datasets we use the RHD training set
in combination with the SHP.

With respect to the input to our network, we adopt
the following cropping procedure. For CMU we crop
the images to a square box centered on the hand with
side size of 1.2H, where H is the size of the person’s
head. For RHD we crop the image to a square box
centered on the hand center with side size equal to 2G,
where G is the dimension of the tightest square box
enclosing the hand. For D+O we use the bounding
box obtained by YOLO detector [19] which we enlarge
by 25%. For Tzionas we use a 224 × 224 cropped im-
age centered on the hand center. For the first three
datasets, the cropped images are resized to 224 × 224
before passed on to the network for detection.

Figure 3 (left) presents the comparison of our
method to the method of Iqbal et al. [9] on the CMU
dataset1. Figure 3 (middle) shows the comparison
of our method and that of Simon et al. [22] on the

1The figure does not show the performance of Simon et al. [22]
because of the unavailability of the relevant data . However, the
method of Iqbal performs better than that of [22].



0.0 0.2 0.4 0.6 0.8 1.0
Normalized distance

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

Ours AUC=0.919
Iqbal AUC=0.915

0 3 6 9 12 15
Error distance (pixels)

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

Ours AUC=0.671
Simon AUC=0.643

0 5 10 15 20 25 30
Error distance (pixels)

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

Ours a) AUC=0.574
Iqbal a) AUC=0.640
Z&B a) AUC=0.489
Ours b) AUC=0.680
Iqbal b) AUC=0.743
Mueller c) AUC=0.689

Figure 3. PCK curves for the CMU (left) Tzionas (middle) and Dexter+Object (right) datasets. In the right
figure a) corresponds to training on RHD and SHP dataset, b) to training on RHD, SHP and CMU dataset
and c) to training on RHD, SHP and SynthHands [14] dataset respectively.

Tzionas dataset. Finally, Figure 3 (right) compares our
method to that of [22] and [33] on the D+O dataset.
It should be noted that the D+O dataset has manu-
ally annotated fingertip positions which was performed
on the depth frame, only. The RGBD calibration pro-
vided by the dataset authors is not accurate, so the
re-projections of the fingertip positions onto the RGB
frame are inaccurate. Competitor methods compute
3D points, and they can estimate the error on the depth
frame. Our method operates on the RGB frame only,
and thus its evaluation is affected by the inaccurate
transfer of the ground truth on the RGB frame. This
is evident in the curve of our method for the lower
thresholds. For the higher thresholds where the errors
due to re-projections are not dominant, our method
still manages to outperform its competitors.

On the RHD dataset the mean (median) EPE er-
ror of our method is 5.03 (3.11) pixels, whereas Iqbal
et al. [9] achieve a mean (median) EPE error of 3.57
(2.20) and Z&B [33] a mean (median) error of 9.14
(5.00) pixels. We should note, however, that the afore-
mentioned methods use an “oracle ground truth crop-
ping” which, in most cases, is 4 times smaller than the
cropping bounding box that we use.

Computational Performance: The proposed
method was designed for achieving state-of-the-art re-
sults while being able to operate on mobile devices
where computational performance is limited and GPUs
or NPUs are not always available. Towards that end,
our MobileNet V2 backbone in combination with the
depth-wise convolution blocks of the VNect-inspired
module, help keep the number of parameters and
FLOPs of our network very low. The proposed net-
work has a total of 7.98M parameters and needs 16.3M
FLOPs for processing a single frame. In comparison,
the same architecture using the ResNet-50 backbone
has 14.5M parameters and requires 29.36M FLOPs.

Using TensorFlow Lite we tested our network on
modern mobile phones running the Android operat-
ing system. We achieved 10fps on the Google Pixel2
and 4fps on the Google Pixel1 using input image size
of 112 × 112. On desktop hardware, our implementa-
tion achieves more than 15fps on an i7 CPU. Further-
more, on an NVIDIA 1080TI GPU we achieve more

that 200fps (5ms/frame). By comparison, the work by
Simon et al [22] on the same GPU performs at 30fps
(33ms/frame), 7 times slower than ours.

Qualitative Results: Qualitative results from the ap-
plication of our method on sample sequences of the
employed datasets are provided in the supplementary
video accompanying this paper2. Among other aspects,
the performance of the proposed method on the D+O
dataset can be verified, backing up the observation re-
garding the inaccurate calibration on this dataset.

6 Summary

This paper presented a novel method for accurate
2D localization of hand keypoints using regular color
images. The presented method combines several ideas
and tools in the relevant literature to achieve hand key-
points localization with state of the art accuracy. The
computational requirements of our solution are very
low, permitting real time performance on mobile de-
vices. On-going work addresses (a) further improve-
ments of the presented architecture, (b) an extension
for dealing with multiple hand instances in an image,
(c) exploitation of the proposed method for 3D hand
pose estimation and (d) exploitation of the developed
method in the context of HCI and HRI applications.
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