Αλγοριθμικές Μέθοδοι Βελτιστοποίησης με Έμφαση σε Κατανεμημένα Προβλήματα

Εισαγωγή στην Βελτιστοποίηση & Παραδείγματα σε Julia
Optimization Lecture 1: Key Concepts

• The central importance of convexity, which replaces linearity
 • Convexity involves second derivatives-the graph of $F(\mathbf{x})$ will bend upwards. A big dilemma – First order vs Second order Methods

• The meaning of Lagrange multipliers, which build the constraints into the equation derivative = zero.

• Gradient Descent vs Newton Vs Accelerated Descent vs Levenberg-Marquardt

• Stochastic gradient descent.
 • One step accounts for a part of the data but not all. We hope and expect that the part is reasonably typical of the whole.
• Much of machine learning can be written as an optimization problem

\[
\min_x \sum_{i=1}^{N} f(x; y_i)
\]

- Example loss functions: logistic regression, linear regression, principle component analysis, neural network loss
Types of Optimization

• Convex optimization
 • The easy case
 • Includes logistic regression, linear regression, SVM

• Non-convex optimization
 • NP-hard in general
 • Includes deep learning
$\forall \alpha \in [0, 1], \, f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y)$
Example: Quadratic

\[f(x) = x^2 \]

\[
(\alpha x + (1 - \alpha)y)^2 = \alpha^2 x^2 + 2\alpha(1 - \alpha)xy + (1 - \alpha)^2 y^2 \\
= \alpha x^2 + (1 - \alpha)y^2 - \alpha(1 - \alpha)(x^2 + 2xy + y^2) \\
\leq \alpha x^2 + (1 - \alpha)y^2
\]
Example: Absolute Value

Example: Abs

\[f(x) = |x| \]

\[
|\alpha x + (1 - \alpha)y| \leq |\alpha x| + |(1 - \alpha)y| \\
= \alpha|x| + (1 - \alpha)|y|
\]
Example: Exponential

\[f(x) = e^x \]

\[e^{\alpha x + (1-\alpha)y} = e^y e^{\alpha(x-y)} = e^y \sum_{n=0}^{\infty} \frac{1}{n!} \alpha^n (x-y)^n \]

\[\leq e^y \left(1 + \alpha \sum_{n=1}^{\infty} \frac{1}{n!} (x-y)^n \right) \]
(if \(x > y \))

\[= e^y \left((1 - \alpha) + \alpha e^{x-y} \right) \]

\[= (1 - \alpha) e^y + \alpha e^x \]
Properties of Convex Functions

- Any line segment we draw between two points lies above the curve.

- Corollary: every local minimum is a global minimum
 - Why?

- This is what makes convex optimization easy
 - It suffices to find a local minimum, because we know it will be global.
Properties of Convex Functions

• Non-negative combinations of convex functions are convex
 \[h(x) = af(x) + bg(x) \]

• Affine scalings of convex functions are convex
 \[h(x) = f(Ax + b) \]

• Compositions of convex functions are \textbf{NOT} generally convex
 • Neural nets are like this
 \[h(x) = f(g(x)) \]
Convex Functions: Alternative Definitions

• First-order condition

\[\langle x - y, \nabla f(x) - \nabla f(y) \rangle \geq 0 \]

• Second-order condition

\[\nabla^2 f(x) \succeq 0 \]

• This means that the matrix of second derivatives is positive semidefinite

\[A \succeq 0 \iff \forall x, \langle x, Ax \rangle \geq 0 \]
Concave Functions

• A function is concave if its negation is convex

\[f \text{ is convex } \iff h(x) = -f(x) \text{ is concave} \]

• Example: \(f(x) = \log(x) \)

\[f''(x) = -\frac{1}{x^2} \leq 0 \]
The Expression "argmin"

• The minimizing x for $F(x) = (x - 1)^2$ is
 • $x^* = \text{argmin} F(x) = 1$.

$\text{argmin} F(x) = \text{value(s) of x where F reaches its minimum.}$

• For strictly convex functions, $\text{argmin} F(x)$ is one point x^*: an isolated minimum.

F is Convex $F(px + (1-p)y) \leq pF(x) + (1-p)F(y)$ for $0 < p < 1$,
For a strictly convex function, this holds with strict inequality.
• Machine learning involves functions $F(x_1, \ldots, x_n)$ of many variables.

\[
\text{One function } F \\
\text{One variable } x \\
F(x + \Delta x) \approx F(x) + \Delta x \frac{dF}{dx}(x) + \frac{1}{2} (\Delta x)^2 \frac{d^2F}{dx^2}(x)
\]

\[
\text{One function } F \\
\text{Variables } x_1 \text{ to } x_n \\
F(x + \Delta x) \approx F(x) + (\Delta x)^T \nabla F + \frac{1}{2} (\Delta x)^T H(\Delta x)
\]

\[
\text{m functions } f = (f_1, \ldots, f_m) \\
\text{n variables } x = (x_1, \ldots, x_n) \\
f(x + \Delta x) \approx f(x) + J(x) \Delta x
\]
Minimum Problems: Convexity and Newton's Method

- We focus on problems of minimization, for functions $F(x)$ with many variables

<table>
<thead>
<tr>
<th>Linear constraints</th>
<th>$Ax = b$</th>
<th>(the set of these x is convex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inequality constraints</td>
<td>$x \geq 0$</td>
<td>(the set of these x is convex)</td>
</tr>
<tr>
<td>Integer constraints</td>
<td>Each x_i is 0 or 1</td>
<td>(the set of these x is not convex)</td>
</tr>
</tbody>
</table>

- K is a convex set
 - If x and y are in K, so is the line from x to y

- F is a convex function
 - The set of points on and above the graph of F is convex

- F is smooth and convex
 - $F(x) \geq F(y) + (\nabla F(y), x - y)$
Convexity - Properties

• The convexity of a function is an important fact!

• This is where linearity fails but convexity succeeds!

• The maximum of two or more linear functions is rarely linear. But the maximum \(F(x) \) of two or more convex functions \(F_i(x) \) is always convex.

• Similarly the maximum of any family of convex functions will be convex.

• But the minimum of two convex functions is generally not convex-it can have a "double well".

• Convexity avoids the truly dangerous situation when \(F \) has its minimum value at an unknown number of separate points in \(K \).
The l_1 and l_2 and l_∞ Norms of x

Norms $F(x) = ||x||$ are convex functions of x. The unit ball where $||x|| \leq 1$ is a convex set K of vectors x. That first sentence is exactly the triangle inequality:

Convexity of $||x||$

$$||p\cdot x + (1 - p)\cdot y|| \leq p||x|| + (1 - p)||y||$$

There are three favorite vector norms ℓ^1, ℓ^2, ℓ^∞. We draw the unit balls $||x|| \leq 1$ in \mathbb{R}^2:

- l_1 norm
 - $||x||_1 = |x_1| + |x_2|$

- l_2 norm
 - $||x||_2 = \sqrt{x_1^2 + x_2^2}$

- l_∞ norm
 - $||x||_\infty = \max(|x_1|, |x_2|)$
Newton's Method (1/2)

• We are looking for the point x^* where $F(x)$ has a minimum and its gradient is the zero vector. We have reached a nearby point after k iterations.

• Near our current point X_k, the gradient is often well estimated by using its first derivative

$$\nabla F(x_{k+1}) \approx \nabla F(x_k) + H(x_k)(x_{k+1} - x_k).$$

• We want that left hand side to be zero. So the natural choice for X_{k+1} comes when the right side is zero: we have n linear equations for the step

$$x_{k+1} \text{ minimizes } F(x_k) + \nabla F(x_k)^T(x - x_k) + \frac{1}{2}(x - x_k)^TH(x_k)(x - x_k).$$
Newton's Method (2/2)

• Newton's method is second order. It uses second derivatives (in H).

• There will still be an error in the new point. But that error is proportional to the square of the error in the previous point:

\[
\|x_{k+1} - x^*\| \leq C \|x_k - x^*\|^2.
\]

• Newton's method is eventually fast, because it uses the second derivatives of F(x). But those can be too expensive to compute—especially in high dimensions.

• Next two slides describe a compromise that gets better near x*.
Newton's Method Examples

\[f(x, y) = (x - y)^4 + 2x^2 + y^2 - x + 2y \]
Levenberg-Marquardt: Nonlinear Least Squares (1/5)

• Least squares begins with a set of m data points \((t_i, Y_i)\)

• It aims to fit those m points as well as possible by choosing the parameters \(p = (p_1, \ldots, p_n)\) in a fitting function \(y_i = C + Dt_i\)

• Then the sum of squared errors depends on \(C\) and \(D\) (i.e., \(p=(C,D))\):

\[
E(C, D) = (y_1 - C - Dt_1)^2 + \cdots + (y_m - C - Dt_m)^2.
\]

• The minimum error \(E\) is at the values \(C\) and \(D\) where the derivatives with respect to \(C\) and \(D\) are zero
This is linear least squares. The fitting function f_j is linear in C and D. J would normally be called A.

But for nonlinear least squares the fitting function $f_j(p)$ depends in a nonlinear way on the parameters $p = (p_1, \ldots, p_n)$.

\[m \text{ equations} \quad J \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = y \]

\[2 \text{ equations} \quad J^T J \begin{bmatrix} \hat{C} \\ \hat{D} \end{bmatrix} = J^T y \quad \text{for the best parameters} \quad \hat{p} = \begin{bmatrix} \hat{C} \\ \hat{D} \end{bmatrix}. \]
• When we minimize the total error $E = \text{sum of squares}$, we expect n nonlinear equations to determine the best parameters.

\[
E(p) = \sum_{i=1}^{m} (y_i - \hat{y}_i)^2 = (y - \hat{y}(p))^T (y - \hat{y}(p))
\]

\[
= y^Ty - 2y^T\hat{y}(p) + \hat{y}(p)^T\hat{y}(p).
\]

• This is the "square loss" error function to minimize by choosing the best parameters p.

• Our problem is to minimize $E(p)$. The next slide describes an algorithm to minimize E approximating Newton but avoiding second derivatives of E.
Levenberg-Marquardt: Nonlinear Least Squares (4/5)

\[\nabla E = 2J^T(y - \hat{y}(p_n)) = 0 \] with \(m \) by \(n \) Jacobian matrix \(J = \frac{\partial y}{\partial p} \) at \(\hat{p} \).

\(J \) was a constant \(m \) by 2 matrix when the fitting function \(y = C + Dt \) was linear in the parameters \(p = (C, D) \). The least squares equation for minimum error is by setting to zero the gradient \(J^TJ\hat{\rho} = J^T\hat{y} \).

Gradient descent

\[p_{n+1} - p_n = -sJ^T(y - \hat{y}(p_n)) \]

Newton (approximate)

\[J^TJ(p_{n+1} - p_n) = J^T(y - \hat{y}(p_n)) \]

That symmetric matrix is an approximation to the second derivative matrix 1/2H (the Hessian of the function \(E \)).
The key idea of Levenberg and Marquardt was to combine the gradient descent and Newton update rules into one rule.

\[
\text{Levenberg-Marquardt} \quad (J^T J + \lambda I)(p_{n+1} - p_n) = J^T(y - \hat{y}(p_n)).
\]

Small values of \(\lambda \) will lean toward Newton, large values of \(\lambda \) will lean more toward gradient descent.

Levenberg-Marquardt is an enhanced first order method, extremely useful for nonlinear least squares. It is one way to train neural networks of moderate size.
Lagrange Multipliers = Derivatives of the Cost

Minimize $F(x) = x_1^2 + x_2^2$ on the line $K: a_1 x_1 + a_2 x_2 = b$

The constraint line is tangent to the minimum cost circle at the solution x^*.

slope $x_2^*/x_1^* = a_2/a_1$

constraint line $a_1 x_1 + a_2 x_2 = b$
slope $-a_1/a_2$
Lagrange Multipliers = Derivatives of the Cost

Multiply $a_1 x_1 + a_2 x_2 - b$ by an unknown multiplier λ and add it to $F(x)$

Lagrangian $L(x, \lambda) = F(x) + \lambda(a_1 x_1 + a_2 x_2 - b)$

$= x_1^2 + x_2^2 + \lambda(a_1 x_1 + a_2 x_2 - b)$

Set the derivatives $\partial L/\partial x_1$ and $\partial L/\partial x_2$ and $\partial L/\partial \lambda$ to zero.

Solve those three equations for x_1, x_2, λ.

\[
\begin{align*}
\frac{\partial L}{\partial x_1} &= 2x_1 + \lambda a_1 = 0 \\
\frac{\partial L}{\partial x_2} &= 2x_2 + \lambda a_2 = 0 \\
\frac{\partial L}{\partial \lambda} &= a_1 x_1 + a_2 x_2 - b = 0 \quad \text{(the constraint!)}
\end{align*}
\]

\[
\begin{align*}
x_1^* &= -\frac{1}{2} \lambda a_1 = \frac{a_1 b}{a_1^2 + a_2^2} \\
x_2^* &= -\frac{1}{2} \lambda a_2 = \frac{a_2 b}{a_1^2 + a_2^2} \\
(x_1^*)^2 + (x_2^*)^2 &= \frac{b^2}{a_1^2 + a_2^2}
\end{align*}
\]

\[
\frac{d}{db} \left(\frac{b^2}{a_1^2 + a_2^2} \right) = \frac{2b}{a_1^2 + a_2^2} = -\lambda.
\]
Minimize a Quadratic with Linear Constraints

- Instead of one constraint on x we have m constraints. There will be m Lagrange multipliers, one for each constraint.

Problem: Minimize $F = \frac{1}{2}x^T S x$ subject to $A^T x = b$.

$L(x, \lambda) = \frac{1}{2}x^T S x + \lambda^T (A^T x - b)$

- x-derivatives of L: $S x + A \lambda = 0$
- λ-derivatives of L: $A^T x = b$
Minimize a Quadratic with Linear Constraints

Solution λ^*, x^*

$$\lambda^* = -(A^T S^{-1} A)^{-1} b \quad x^* = S^{-1} A (A^T S^{-1} A)^{-1} b.$$

Minimum cost F^*

$$F^* = \frac{1}{2} (x^*)^T S x^* = \frac{1}{2} b^T (A^T S^{-1} A)^{-1} A^T S^{-1} S S^{-1} A (A^T S^{-1} A)^{-1} b. \quad \text{This simplifies a lot!}$$

Minimum cost F^*

$$F^* = \frac{1}{2} b^T (A^T S^{-1} A)^{-1} b$$

Gradient of cost $\frac{\partial F^*}{\partial b} = (A^T S^{-1} A)^{-1} b = -\lambda^*$
Gradient Descent Toward the Minimum

- Calculus teaches us that all the first derivatives are zero at the minimum (when f is smooth).
- The steepest direction, in which f(x) decreases fastest, is given by the gradient \(-\nabla f\):

\[
x_{k+1} = x_k - s_k \nabla f(x_k)
\]

- \(s_k\) is the stepsize or the learning rate. We hope to move toward the point \(x^*\) where the graph of f(x) hits bottom.

The gradient of \(F(x_1, \ldots, x_n)\) is the column vector \(\nabla F = \left(\frac{\partial F}{\partial x_1}, \ldots, \frac{\partial F}{\partial x_n} \right)\).
Gradient Descent Example

\[f(x, y) = (x - y)^4 + 2x^2 + y^2 - x + 2y \]

- sk = s = 0.09
- sk = s = 0.2
Gradient Examples

Example 1 For a constant vector $a = (a_1, \ldots, a_n)$, $F(x) = a^T x$ has gradient $\nabla F = a$.

The partial derivatives of $F = a_1 x_1 + \cdots + a_n x_n$ are the numbers $\partial F/\partial x_k = a_k$.

Example 2 For a symmetric matrix S, the gradient of $F(x) = x^T S x$ is $\nabla F = 2 S x$.

To see this, write out the function $F(x_1, x_2)$ when $n = 2$. The matrix S is 2 by 2:

$$F = \begin{bmatrix} x_1 & x_2 \\ \end{bmatrix} \begin{bmatrix} a & b \\ b & c \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \end{bmatrix} = ax_1^2 + cx_2^2 + 2bx_1x_2$$

$$\begin{bmatrix} \partial f/\partial x_1 \\ \partial f/\partial x_2 \\ \end{bmatrix} = 2 \begin{bmatrix} ax_1 + bx_2 \\ bx_1 + cx_2 \\ \end{bmatrix} = 2S \begin{bmatrix} x_1 \\ x_2 \\ \end{bmatrix}.$$

Example 3 For a positive definite symmetric S, the minimum of a quadratic $F(x) = \frac{1}{2} x^T S x - a^T x$ is the negative number $F_{\min} = -\frac{1}{2} a^T S a$ at $x^* = S^{-1} a$.

This is an important example! The minimum occurs where first derivatives of F are zero:

$$\nabla F = \begin{bmatrix} \partial F/\partial x_1 \\ \vdots \\ \partial F/\partial x_n \\ \end{bmatrix} = Sx - a = 0$$ at $x^* = S^{-1} a = \arg \min F$.

26/2/2021 ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΜΕ ΕΜΦΑΣΗ ΣΕ ΚΑΤΑΝΕΜΗΜΕΝΑ ΠΡΟΒΛΗΜΑΤΑ 32
Gradient Examples

Example 4 The determinant $F(x) = \det X$ is a function of all n^2 variables x_{ij}. In the formula for $\det X$, each x_{ij} along a row is multiplied by its “cofactor” C_{ij}. This cofactor is a determinant of size $n - 1$, using all rows of X except row i and all columns except column j—and multiplied by $(-1)^{i+j}$:

$$\frac{\partial(\det X)}{\partial x_{ij}} = C_{ij}$$

in the matrix of cofactors of X give ∇F.

Example 5 The logarithm of the determinant is a most remarkable function:

$$L(X) = \log(\det X)$$

has partial derivatives

$$\frac{\partial L}{\partial x_{ij}} = \frac{C_{ij}}{\det X} = j, \text{ i entry of } X^{-1}.$$
The Geometry of the Gradient Vector

Start with a function $f(x, y)$. It has $n = 2$ variables. Its gradient is $\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$. This vector changes length as we move the point x, y where the derivatives are computed:

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) \quad \text{Length} = ||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} = \text{steepest slope of } f$$

Example 6 The graph of a linear function $f(x, y) = ax + by$ is the plane $z = ax + by$. The gradient is the vector $\nabla f = \begin{bmatrix} a \\ b \end{bmatrix}$ of partial derivatives. The length of that vector is $||\nabla f|| = \sqrt{a^2 + b^2} = \text{slope of the roof}$. The slope is steepest in the direction of ∇f.

$$\text{plane} \quad x + 2y = 9$$

$$\text{negative gradient } -\nabla f \quad \text{slope is } -\sqrt{5} \text{ in this direction}$$

$$\text{steepest direction} \quad \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \nabla f$$

$$\text{slope is } ||\nabla f|| = \sqrt{5} \text{ in this direction}$$

$$\text{level direction} \quad \begin{bmatrix} 2 \\ -1 \end{bmatrix} = (\nabla f)_{\perp}$$

$f = x + 2y$ is constant in this direction
The Geometry of the Gradient Vector

For the nonlinear function $f(x, y) = ax^2 + by^2$, the gradient is $\nabla f = \begin{bmatrix} 2ax \\ 2by \end{bmatrix}$.

That tells us the steepest direction, changing from point to point. We are on a curved surface (a bowl opening upward). The bottom of the bowl is at $x = y = 0$ where the gradient vector is zero. The slope in the steepest direction is $||\nabla f||$. At the minimum, $\nabla f = (2ax, 2by) = (0, 0)$ and slope = zero.

The steepest direction changes as you go down! The gradient doesn’t point to the bottom!

The steepest direction ∇f up and down the bowl $ax^2 + by^2 = z$

Flat direction $(\nabla f) \perp$ along the ellipse $ax^2 + by^2 = \text{constant}$

the steepest direction is perpendicular to the flat direction but the steepest direction is not aimed at the minimum point.
An Important Example with Zig-Zag

The example $f(x, y) = \frac{1}{2}(x^2 + by^2)$ is extremely useful for $0 < b \leq 1$. Its gradient ∇f has two components $\frac{\partial f}{\partial x} = x$ and $\frac{\partial f}{\partial y} = by$. The minimum value of f is zero. That minimum is reached at the point $(x^*, y^*) = (0, 0)$. Best of all, steepest descent with exact line search produces a simple formula for each point (x_k, y_k) in the slow progress down the bowl toward $(0, 0)$. Starting from $(x_0, y_0) = (b, 1)$ we find these points:

$$x_k = b \left(\frac{b - 1}{b + 1} \right)^k, \quad y_k = \left(\frac{1 - b}{1 + b} \right)^k, \quad f(x_k, y_k) = \left(\frac{1 - b}{1 + b} \right)^{2k} f(x_0, y_0)$$

For b close to 1, this gradient descent is faster. First-order convergence means that the distance to $(x^*, y^*) = (0, 0)$ is reduced by the constant factor $(1 - b)/(1 + b)$ at every step. The following analysis will show that linear convergence extends to all strongly convex functions f—first when each line search is exact, and then (more realistically) when the search at each step is close to exact.
An Important Example with Zig-Zag

- \(b = 0.1, \ s = 0.1 \)
- \(b = 0.8, \ s = 0.1 \)
An Important Example with Zig-Zag

b=0.1, optimal line search

b=0.99, optimal line search
Convergence Analysis for Steepest Descent

Convergence Analysis for Steepest Descent

The gradient descent step is $x_{k+1} = x_k - s\nabla f_k$. We estimate f by its Taylor series:

$$f(x_{k+1}) \leq f(x_k) + \nabla f^T(x_{k+1} - x_k) + \frac{M}{2}||x_{k+1} - x_k||^2$$

$$= f(x_k) - s||\nabla f||^2 + \frac{Ms^2}{2}||\nabla f||^2$$

Steady drop in f

$$f(x_{k+1}) - f(x^*) \leq \left(1 - \frac{m}{M}\right)\left(f(x_k) - f(x^*)\right)$$
Inexact Line Search and Backtracking

Up to now all line searches were exact: x_{k+1} exactly minimized $f(x)$ along the line $x = x_k - s \nabla f_k$. Choosing s is a one-variable minimization. The line moves from x_k in the direction of steepest descent. But we can’t expect an exact formula for minimizing a general function $f(x)$, even just along a line. So we need a fast sensible way to find an approximate minimum (and the analysis needs a bound on this additional error).

One sensible way is **backtracking**. Start with the full step $s = 1$ to $X = x_k - \nabla f_k$.

Test

If $f(X) \leq f(x_k) - \frac{s}{3} \| \nabla f_k \|^2$, with $s = 1$, stop and accept X as x_{k+1}.

Otherwise backtrack: Reduce s to $\frac{1}{2}$ and try the test on $X = x_k - \frac{1}{2} \nabla f_k$.

If the test fails again, try the stepsize $s = \frac{1}{4}$. Since ∇f is a descent direction, the test is eventually passed. The factors $\frac{1}{3}$ and $\frac{1}{2}$ could be any numbers $\alpha < \frac{1}{2}$ and $\beta < 1$.
Momentum and the Path of a Heavy Ball

Key idea: Zig-zag would not happen for a heavy ball rolling downhill.

- Its momentum carries it through the narrow valley-bumping the sides but moving mostly forward. So we add momentum with coefficient β to the gradient (Polyak's important idea).
- The direction z_k of the new step remembers the previous direction z_{k-1}.

Descent with momentum:

$$x_{k+1} = x_k - sz_k \text{ with } z_k = \nabla f(x_k) + \beta z_{k-1}$$

- Now we have two coefficients to choose-the stepsize s and also β.
- Momentum has turned a one-step method (gradient descent) into a two-step method.

Descent with momentum:

$$x_{k+1} = x_k - sqz_k$$

$$z_{k+1} - \nabla f(x_{k+1}) = \beta z_k$$
The Quadratic Model

- Let us assume that \(f(x) = x'Sx \) is a quadratic function. Then the gradient is a linear function.

- To follow the steps of accelerated descent, we track each eigenvector of \(S \).

\[
\text{Following the eigenvector } q: \quad c_{k+1} = c_k - s d_k \\
\quad \beta d_k \left[\begin{array}{c} 1 \\ -\lambda \\ 1 \end{array} \right] \left[\begin{array}{c} c_{k+1} \\ d_{k+1} \end{array} \right] = \left[\begin{array}{c} 1 \\ 0 \\ -s \end{array} \right] \left[\begin{array}{c} c_k \\ \beta d_k \end{array} \right]
\]

Descent step multiplies by \(R \):

\[
\left[\begin{array}{c} c_{k+1} \\ d_{k+1} \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ \lambda & 1 \end{array} \right] \left[\begin{array}{c} 1 \\ -s \\ \beta \end{array} \right] \left[\begin{array}{c} c_k \\ \beta d_k \end{array} \right] = R \left[\begin{array}{c} c_k \\ d_k \end{array} \right]
\]

Choose \(s \) and \(\beta \) to minimize \(\max \left| e_1(\lambda), |e_2(\lambda)| \right| \) for \(\lambda_{\min}(S) \leq \lambda \leq \lambda_{\max}(S) \).

\[
s = \left(\frac{2}{\sqrt{\lambda_{\max}} + \sqrt{\lambda_{\min}}} \right)^2 \quad \text{and} \quad \beta = \left(\frac{\sqrt{\lambda_{\max}} - \sqrt{\lambda_{\min}}}{\sqrt{\lambda_{\max}} + \sqrt{\lambda_{\min}}} \right)^2.
\]

Ordinary descent factor: \(\left(\frac{1 - b}{1 + b} \right)^2 \)

Accelerated descent factor: \(\left(\frac{1 - \sqrt{b}}{1 + \sqrt{b}} \right)^2 \)
Another way to bring x_{k-1} into the formula for x_{k+1} is due to Yuri Nesterov. Instead of evaluating the gradient ∇f at x_k, he shifted that evaluation point to $x_k + \gamma_k(x_k - x_{k-1})$. And choosing $\gamma = \beta$ (the momentum coefficient) combines both ideas.

Gradient Descent
- Stepsize s
- $\beta = 0$
- $\gamma = 0$

Heavy Ball
- Stepsize s
- Momentum β
- $\gamma = 0$

Nesterov Acceleration
- Stepsize s
- Momentum β
- Shift ∇f by $\gamma \Delta x$

Accelerated descent involves all three parameters s, β, γ:

$$x_{k+1} = x_k + \beta (x_k - x_{k-1}) - s \nabla f(x_k + \gamma (x_k - x_{k-1}))$$

To analyze the convergence rate for Nesterov with $\gamma = \beta$, we get

Nesterov

$$x_{k+1} = y_k - s \nabla f(y_k) \quad \text{and} \quad y_{k+1} = x_{k+1} + \beta (x_{k+1} - x_k).$$
Nesterov Acceleration

Suppose $f(x) = \frac{1}{2} x^T S x$ and $\nabla f = S x$ and $S q = \lambda q$ as before. To track this eigenvector set $x_k = c_k q$ and $y_k = d_k q$ and $\nabla f(y_k) = \lambda d_k q$ in (19):

$$c_{k+1} = (1 - s \lambda) d_k \quad \text{and} \quad d_{k+1} = (1 + \beta) c_{k+1} - \beta c_k = (1 + \beta)(1 - s \lambda) d_k - \beta c_k \quad \text{becomes}$$

$$
\begin{bmatrix}
 c_{k+1} \\
 d_{k+1}
\end{bmatrix} =
\begin{bmatrix}
 0 & 1 - s \lambda \\
 -\beta & (1 + \beta)(1 - s \lambda)
\end{bmatrix}
\begin{bmatrix}
 c_k \\
 d_k
\end{bmatrix} = R
\begin{bmatrix}
 c_k \\
 d_k
\end{bmatrix}
$$

Every Nesterov step is a multiplication by R. Suppose R has eigenvalues e_1 and e_2, depending on s and β and λ. We want the larger of $|e_1|$ and $|e_2|$ to be as small as possible for all λ between $\lambda_{\min}(S)$ and $\lambda_{\max}(S)$. These choices for s and β give small e's:

$$
\begin{align*}
 s &= \frac{1}{\lambda_{\max}} \quad \text{and} \quad \beta = \frac{\sqrt{\lambda_{\max}} - \sqrt{\lambda_{\min}}}{\sqrt{\lambda_{\max}} + \sqrt{\lambda_{\min}}} \\
 \text{give} \quad \max(|e_1|, |e_2|) &= \frac{\sqrt{\lambda_{\max}} - \sqrt{\lambda_{\min}}}{\sqrt{\lambda_{\max}}}
\end{align*}
$$

26/2/2021
Stochastic Gradient Descent

Consider minimizing an average of functions

\[
\min_x \frac{1}{m} \sum_{i=1}^{m} f_i(x)
\]

As \(\nabla \sum_{i=1}^{m} f_i(x) = \sum_{i=1}^{m} \nabla f_i(x) \), gradient descent would repeat:

\[
x^{(k)} = x^{(k-1)} - t_k \cdot \frac{1}{m} \sum_{i=1}^{m} \nabla f_i(x^{(k-1)}), \quad k = 1, 2, 3, \ldots
\]

In comparison, stochastic gradient descent or SGD (or incremental gradient method) repeats:

\[
x^{(k)} = x^{(k-1)} - t_k \cdot \nabla f_{i_k}(x^{(k-1)}), \quad k = 1, 2, 3, \ldots
\]

where \(i_k \in \{1, \ldots, m\} \) is some chosen index at iteration \(k \).

(Robbins and Monro, 1951, Annals of Mathematical Statistics)
Stochastic Gradient Descent

Two rules for choosing index i_k at iteration k:

- **Randomized rule:** choose $i_k \in \{1, \ldots, m\}$ uniformly at random
- **Cyclic rule:** choose $i_k = 1, 2, \ldots, m, 1, 2, \ldots, m, \ldots$

Randomized rule is more common in practice. For randomized rule, note that

$$\mathbb{E}[\nabla f_{i_k}(x)] = \nabla f(x)$$

so we can view SGD as using an unbiased estimate of the gradient at each step.

Main appeal of SGD:

- Iteration cost is independent of m (number of functions)
- Can also be a big savings in terms of memory usage
Stochastic Gradient Descent – Step Size

Standard in SGD is to use diminishing step sizes, e.g., \(t_k = 1/k \), for \(k = 1, 2, 3, \ldots \).

Why not fixed step sizes? Here’s some intuition. Suppose we take cyclic rule for simplicity. Set \(t_k = t \) for \(m \) updates in a row, we get:

\[
x^{(k+m)} = x^{(k)} - t \sum_{i=1}^{m} \nabla f_i(x^{(k+i-1)})
\]

Meanwhile, full gradient with step size \(t \) would give:

\[
x^{(k+1)} = x^{(k)} - t \sum_{i=1}^{m} \nabla f_i(x^{(k)})
\]

The difference here: \(t \sum_{i=1}^{m} [\nabla f_i(x^{(k+i-1)}) - \nabla f_i(x^{(k)})] \), and if we hold \(t \) constant, this difference will not generally be going to zero.
Stochastic Gradient Descent – Mini Batches

Also common is mini-batch stochastic gradient descent, where we choose a random subset \(I_k \subseteq \{1, \ldots, m\} \), of size \(|I_k| = b \ll m\), and repeat:

\[
x^{(k)} = x^{(k-1)} - t_k \cdot \frac{1}{b} \sum_{i \in I_k} \nabla f_i(x^{(k-1)}), \quad k = 1, 2, 3, \ldots
\]

Again, we are approximating full gradient by an unbiased estimate:

\[
\mathbb{E} \left[\frac{1}{b} \sum_{i \in I_k} \nabla f_i(x) \right] = \nabla f(x)
\]

Using mini-batches reduces the variance of our gradient estimate by a factor \(1/b\), but is also \(b\) times more expensive.
Some Julia Examples: Newton

```julia
### Newton Method Version 1

```macro
function Newton(grad, dgrad, start, n_iter = 100, tolerance = 1e-10)
 dim_size = length(start)
 vector = Array{Float64,2}(undef,n_iter,dim_size)
 diff = Array{Float64,1}(undef,dim_size)
 vector[1,:] = start
 iterations = 0;
 for i in range(2, step=1, stop = n_iter)
 diff = - dgrad(vector[i-1,:])\grad(vector[i-1,:])
 ## Uses the convenient NumPy functions numpy.all() and numpy.abs() to compare
 ## the absolute values of diff and tolerance in a single statement
 #if np.all(np.abs(diff).<= tolerance)
 # break
 #end
 eps=sum(abs.(grad(vector[i-1,:])));
 if eps<= tolerance
 break
 end
 vector[i,:] = vector[i-1,:]+ diff[:]
 iterations +=1
 end
 return vector[1:iterations,:], sum(abs.(grad(vector[iterations,:]))), iterations
end
```
Some Julia Examples: GD with fixed sk

```julia
function gradient_descent_v3(f, start, learn_rate, n_iter = 100, tolerance = 1e-10)
 dim_size = length(start)
 vector = Array{Float64,2}(undef,n_iter,dim_size)
 vector[1,:] = start
 iter=1;
 for i in range(2, step=1, stop = n_iter)
 #diff2 = - learn_rate.*ForwardDiff.gradient(f,vector[i-1,:])
 x = vector[i-1,:];
 #gradf = [4*(x[1]-x[2])^3+4*x[1]-1; -4*(x[1]-x[2])^3+2*x[2]+2]
 gradf = ForwardDiff.gradient(f,x)
 diff = - learn_rate.*gradf
 ## Uses the convenient NumPy functions numpy.all() and numpy.abs() to compare
 ## the absolute values of diff and tolerance in a single statement
 eps=sum(abs.(gradf[:]));
 if eps<= tolerance
 break
 end
 vector[i,:] = vector[i-1,:]+diff[:]
 iter=iter+1;
 end
 return vector[1:iter,:]
end
```
Some Julia Examples: GD Optimal Line Search

```julia
function gradient_descentv3(f, start, learn_rate, n_iter = 100, tolerance = 1e-10)
 dim_size = length(start)
 vector = Array{Float64,2}(undef,n_iter,dim_size)
 vector[1,:] = start
 iter=1;
 for i in range(2, step=1, stop = n_iter)
 #diff2 = - learn_rate.*ForwardDiff.gradient(f,vector[i-1,:])
 x = vector[i-1,:];
 gradf = [4*(x[1]-x[2])^3+4*x[1]-1;-4*(x[1]-x[2])^3+2*x[2]+2]
 gradf = ForwardDiff.gradient(f,x)
 diff = - learn_rate.*gradf
 ## Uses the convenient NumPy functions numpy.all() and numpy.abs() to compare
 ## the absolute values of diff and tolerance in a single statement
 eps=sum(abs.(gradf[:]));
 if eps<= tolerance
 break
 end
 vector[i,:] = vector[i-1,:] + diff[:]
 iter=iter+1;
 end
 return vector[1:iter,:]
end
```
Some Julia Examples: Animated Plots

```julia
function test_zig_zag(b)
 g(x) = 0.5*(x[1]^2+b*x[2]^2)
 x₀=[1 0]
 y₁, eps, iter_num = Newton(v→ForwardDiff.gradient(g,v), v→ForwardDiff.hessian(g,v), x₀);
 y₂ = gradient_descent2(v→ForwardDiff.gradient(g,v), x₀, 0.09);
 y, iter_num = gradient_descentv3(g, x₀, 0.5);
 println(iter_num)
 y₃, iter = gradient_descentv2(v→ForwardDiff.gradient(g,v), v→ForwardDiff.hessian(g,v), x₀);

 xs = LinRange(-1,1,100)
 ys = LinRange(-1,1,100)
 zs = [0.5*x^2+0.5*b*z^2 for x in xs, z in ys]
 figure = surface(xs,ys,zs)
 save("$b zig zag.png", figure)

 points = Node(Point2f0([(y[1], y[2])])
 xvector = Float64[]
 yvector = Float64[]

 fig, ax, sc = scatter(points)
 contour!(xs,ys,zs;levels = 10)
 limits!(ax, -1, 1, -1, 1)
 frames = 1:size(y,1)
 record(fig, "$b zigzag_animation_GD_2D.mp4", frames; framerate = 1) do frame
 new_point = Point2f0(y[frame,1], y[frame,2])
 points[] = push!(points[], new_point)
 xvector = push!(xvector,Float64(y[frame,1]))
 yvector = push!(yvector,Float64(y[frame,2]))
 lines!(xvector, yvector, color:=green, linewidth = 3)
 end
```
For the Next Course

• Prepare animated plots for the quadratic example using:
  • Momentum and Nesterov acceleration for various $s,b$

• Prepare animated plots for SGD and various schemes
  • Randomized, Cyclic rule and mini batch
Ερωτήσεις